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A. SCIENTIFIC OBJECTIVES: The objective of this research program is to apply 

model-based signal processing methods to enhance the performance of computation 

electromagnetics (CEM) simulators for shipboard antenna design. While recent advances 

in CEM algorithms has significantly reduced the simulation cost of modeling complex 

radiation and scattering phenomena, real-world engineering design and optimization 

often require that calculations be carried out repeatedly over large parameter spaces such 

as frequency and aspect angle, making the computation cost still exceedingly high. The 

goal of this research is to apply model-based signal processing algorithms to CEM 

simulators to overcome such computational bottleneck and achieve higher design 

throughput. In particular, we shall address the issue of how to interpolate and extrapolate 

the frequency and angular behaviors of antenna characteristics based on a sparse set of 

computed data. We shall develop algorithms to extract sparse and physical models of the 

relevant physics embedded in CEM data to facilitate design and synthesis. Finally, we 

shall explore the transportability of the methodology to other applications such as radar 

signatures and wireless channel characteristics. 

B. SUMMARY OF RESULTS AND SIGNIFICANT ACCOMPLISHMENTS: Our 

research during the second year of this program has been focused on three topics. First, 

we continue our research to develop an effective algorithm to extrapolate the frequency 

behavior of antenna radiation characteristics on a complex platform from a limited set of 

computed data.    A frequency-dependent time-of-arrival model is utilized to more 



accurately describe the scattering physics of the induced current on the platform. We 

have devised and implemented a robust algorithm to estimate the model parameters, 

including the additional frequency-dependent factors. Second, we have developed an 

algorithm based on the adaptive feature extraction approach to address the frequency 

interpolation problem. This algorithm has also been extended to the angular domain to 

achieve two-dimensional interpolation. It was used in conjunction with the fast multipole 

code FISC to predict the radar image of the benchmark VFY-218 airplane at UHF band 

with excellent results. Third, we have developed a methodology to parameterize complex 

antenna radiation patterns using a sparse point radiator model. Our approach is based on 

a matching pursuit algorithm and the concept has been demonstrated on FISC-generated 

data for a ship-like platform. The detailed descriptions of these three topics are described 

below. They are followed by discussions on some exploratory efforts related to this 

program. 

Model-based frequency extrapolation of antenna radiation patterns on complex 

platforms. In antenna design and analysis, the mounting platform can have a significant 

effect on the antenna radiation characteristics. However, rigorous solution of the radiation 

problem over a complex platform is very time consuming, and the computation 

complexity increases dramatically as the frequency increases. During the first year of 

this program, we developed a model-based frequency extrapolation technique with which 

the radiated field over a broad band of frequencies can be obtained using rigorously 

computed results at low frequencies. Our approach entailed fitting the currents computed 

at low frequencies to a time-of-arrival model and determining the model coefficients 

using the superresolution algorithm ESPRIT [1]. The currents and the radiation 

characteristics were then extrapolated from the resulting model. Some initial results were 

obtained during the first year but the accuracy of the extrapolated results was not 

satisfactory. 

During this past year, we have significantly improved the algorithm by adopting an 

improved frequency-dependent model: 

J(a» = Xa„ö)a»e-^ (1) 



to parameterize the induced current on the platform.  In the above expression, tn is the 

arrival time of the nth incident wave and an and a„ are its amplitude and frequency 

dependency, respectively. The different time-of-arrival terms correspond to the different 

incident wave mechanisms from both the direct antenna radiation and higher-order 

scattering from other parts of the platform, as illustrated in Fig. 1. These different 

mechanisms have in general different frequency dependencies. For canonical platform 

shapes, their exact frequency dependencies are known through the geometrical theory of 

diffraction (GTD) [2]. However, for more complex structures, they must be determined 

numerically. To accurately extrapolate the frequency response to a much broader range, 

the accurate estimation of the frequency factors is critical. A small error in a will result in 

dramatic difference in amplitude at frequencies in the extrapolated region. However, the 

existing superresolution algorithms based on eigenspace decomposition (e.g. ESPRIT and 

MUSIC) cannot be directly apply to this more realistic model. We have devised a pre- 

multiplication scheme in conjunction with the complex time-of-arrival estimation from 

ESPRIT to determine the additional frequency-dependent factors [22,24]. The 

performance of the algorithm in the presence of noise has been evaluated based on 

simulated data and errors in the estimation of model parameters have been quantified. 

Our results show that the method is quite robust. The algorithm has been applied to 

extrapolate the induced currents and radiation patterns in both 2D and 3D antenna- 

platform radiation problems. 

As an example, a 2D structure shown in Fig. 2(a) is considered. The platform is 14m 

in length and 3m in height. The antenna is a horizontal line source placed at 5m above the 

platform. The induced current on the platform is computed from 0.1 to 0.5 GHz at 21 

frequency points using 2D method of moments (MoM). The current is extrapolated to 1.3 

GHz and radiated field is then computed based on the extrapolated current. Both the 

frequency-independent and frequency-dependent time-of-arrival models are used to 

perform the extrapolation, and the resulting radiated fields at the observation angle of 6 = 

40° are plotted in Figs. 2(b) and 2(c), respectively. Also plotted is the reference MoM 

result obtained via brute force computation. The primary radiation of the dipole antenna 

is not included in the plots so that we can better observe the secondary radiation from the 

platform. It is apparent that the frequency dependency in the field response is not 



Antenna 

Fig. 1. Time-of-arrival model for the induced current at point P accounts for 
the direct incident radiation from the antenna and the multiple scattered 
waves from other parts of the platform. 
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Fig. 2(a). 2D platform geometry 
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captured by the frequency-independent time-of-arrival model, while the field predicted 

by the frequency dependent model is in good agreement with the computed result. 

Next, we look at a 3D platform shown in Fig. 3(a). The antenna is a horizontal dipole 

oriented in the x direction. The induced current is computed from 0.1 to 0.36 GHz at 13 

frequencies and extrapolated to 0.7GHz. The computation is carried out using FISC, a 3D 

MoM code based on the fast multipole method [3]. The extrapolated frequency response 

at the observation angle fa = 30°, fa = -60° is plotted in Fig. 3(b). Also plotted for 

comparison is the reference response computed by FISC via brute force. The major 

radiation features are captured by the extrapolation. Figs. 3(c) and 3(d) show the 

reference and extrapolated radiation patterns as functions of frequency and azimuth angle 

when the elevation angle is fixed at 50°. Good qualitative agreement is observed. The 

correlation index between the two figures is found to be 0.9980 in the sampled region and 

0.9742 in the extrapolated region, respectively. The computation time of the brute force 

reference results is about 50 hours on a Pentiumll 400MHz PC, while the total 

computation time to carry out the electromagnetic computation in the sampled region and 

the extrapolation process is 7 hours. 

Although the determination of model parameters is more complicated, the frequency 

dependent model show significant performance improvement over the frequency 

independent model. This is due to the improved modeling of the scattering physics. Since 

the current required for the extrapolation is only computed at lower frequencies, large 

savings in computation time and memory can be achieved. We hope to further extend 

this methodology to model the near fields of complex platforms for problems related to 

antenna coupling and radiation hazard evaluation [17]. We also plan to investigate 

extrapolation issues related to non-perfect conducting structures. 

Model-based frequency interpolation using adaptive feature extraction. We have 

begun to investigate the interpolation problem for CEM data. Although the potential 

payoff of an interpolation algorithm is not as great as extrapolation, it may provide a 

more robust way to achieve computational savings. To achieve the parameterization in 

the frequency dimension, we again utilize the multiple-arrival model for the induced 

current. To obtain the model parameters from the computed data, we adopt an algorithm 
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termed adaptive feature extraction (AFE). AFE can be considered as a generalization of 

the CLEAN algorithm [4], and is similar to the adaptive joint time-frequency technique 

[5-7] and the matching pursuit algorithm [8] in the iterative manner it performs the 

parameterization. We have previously applied it to construct the inverse synthetic 

aperture radar (ISAR) image from radar measurement data that was undersampled in the 

aspect dimension [18]. The essential idea of the AFE algorithm is to search and extract 

out individual scattering features from the data set one at a time. During each iteration 

the strongest feature is identified and removed from the original data. The procedure is 

then iterated until the data is well parameterized by the feature set. In this manner, the 

interference between different scattering features, which is significant for undersampled 

data, can be largely avoided. Since the features in our model are exponential functions of 

frequency and aspect, we use random sampling during the collection of the original 

computation data in order to avoid the ambiguity in selecting the strongest feature. This 

approach is similar to the random array concept that uses highly thinned but randomly 

spaced elements to avoid grating lobes [9]. 

We have also extended this algorithm to interpolate 2-dimensional frequency and 

angle data [20, 26]. In this case, a more generalized time-of-arrival and angle-of-arrival 

model is used to parameterize the current. We have applied the 2D algorithm to predict 

the ISAR image of the benchmark VFY218 airplane [10]. The fuselage length of the 

airplane is 15.33 meters and the maximum width measured from the wing tips is 8.90 

meters. To generate its ISAR image at a center frequency of 400 MHz with bandwidth 

267 MHz, we use the fast solver FISC on a Pentium II 450MHz computer. The total 

number of sampling points must be at least 40 frequency points by 40 aspect points 

within the 40-degree aperture to satisfy the Nyquist sampling criterion. The resulting 

range and cross range resolution is about half a meter. Since the calculation for one 

single frequency-aspect point takes about 3 hours (with about 80,000 unknowns in the 

moment equation), the total computation time would be 200 days if we use brute-force 

calculation to generate the data. Based on a 5:1 undersampling rate, we only compute the 

scattering problem at 62 randomly sampled points and use the AFE interpolation scheme 

to interpolate the data to all 40x40=1600 points. The computation time is about 8 days. 

The resulting ISAR image at the 130-degree (from nose-on) look angle is plotted in Fig. 



4(a). For comparison, Fig. 4(b) shows the ISAR image constructed from the chamber 

measurement data for the same look angle. The target outline is overlaid on the 

measurement image. The measurement was carried out at the US Navy China Lake 

facility on a 1:30 scaled model at the frequency band of 8 to 16 GHz. Comparing Fig. 

4(a) to Fig. 4(b), we find that all the features in the measurement image are well predicted 

in the simulated image from using FISC and interpolation. 

The AFE approach has been found to be stable and robust. Sufficient accuracy in the 

predicted image features can be achieved even when the original computed data is 

sampled at 5:1 below the Nyquist criterion in either frequency or aspect. Therefore, the 

expected time savings in using this approach is about 25:1 in comparison to the brute- 

force computation. The AFE algorithm does involve exhaustive search and must be 

carried out for every current element on the target. However, the time consumed in the 

interpolation is still relatively insignificant when compared to the electromagnetic 

computation time. This error sources that limit the dynamic range of the final interpolated 

data are currently being investigated. The approach will also be further explored for 

application in the antenna placement problem. 

Extraction of sparse representation of antenna radiation data. The previous 

topics are focused on the utilization of model-based processing to extrapolate or 

interpolate CEM data for the "forward" solution of electromagnetic radiation and 

scattering problems involving complex platforms. An equally important problem from 

the design perspective is the "inverse" algorithm of spatially pinpointing the locations of 

platform scattering based on CEM data. Toward this end, we had previously developed a 

method to extract sparse model of the antenna radiation pattern on a complex platform 

[11],[12]. This representation is based on a point radiator model that describes the 

radiation pattern by a collection of "radiation centers" on the platform. The methodology 

for obtaining the radiation center model entails first generating the 3-D antenna synthetic 

aperture radar (ASAR) imagery of the platform, and then parameterizing the resulting 

image by a collection of point radiators via the CLEAN algorithm [27]. Once such a 

representation is obtained, we can rapidly reconstruct antenna radiation patterns over 

frequencies and aspects with good fidelity. Thus such a model can be used for real-time 



Range (dBsm) 

Fig.4(a) IS AR image of VFY-218 at 130 degrees from nose-on 
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reconstruction of complex antenna patterns in high-level system simulations. 

Furthermore, the resulting radiation center information can be used to pinpoint cause- 

and-effect in platform scattering and provide important design guidelines for antenna 

placement and optimization. However, the method was based on a Fourier-based 

algorithm that relied on a number of small-angle, small-bandwidth approximations. 

Furthermore, the concept was only demonstrated using high-frequency ray-tracing 

simulations and not more rigorous CEM data. 

During the past year, we have overcome the above deficiencies by developing a more 

generalized matching pursuit algorithm in the frequency-aspect domain based on a point 

radiator basis [25]. We have also demonstrated the feasibility of extracting a sparse 

model of the antenna-platform interaction using CEM data from FISC. The matching 

pursuit algorithm is implemented based on the following radiation center basis: 

ES(k 6 (t>) = &e-i
kr0e)k(*osindcos§+y0sinQsm<$>+z0cose) _ Ae~jkr0eJ(kxx0+kyy0+kzz0) 

(2) 

where k is the wave number, (x0, yo, zo) is the location of the radiation center. The origin 

of the above basis is illustrated in Fig. 5. Note that the phase factor in (2) accounts for 

the path delay from the antenna to the point scatterer on the platform, and then to the 

observation direction in the far field. To speed up the parameterization time of the 

matching pursuit algorithm, we estimate the location of the radiation centers by utilizing 

the Fourier-based ASAR algorithm. The point with the highest intensity is first located in 

the ASAR image and its amplitude and coordinates are determined to serve as an estimate 

of the strongest radiation center. We next zoom in on the precise location of the radiation 

center via a fine search. We then subtract the contribution of this radiation center from 

the total radiated field and iterate the process until the energy in the residual signal has 

reached a sufficiently small level. 

As an example, the radiation center model is extracted from the computed radiation 

data from FISC for the ship-like structure shown earlier in Fig. 3(a). The radiated field is 

computed at a center frequency of 1.0 GHz and a bandwidth of 500 MHz. The center 

observation angle is (j)e! - 40°, 0^ = 50° and the angular range is about 23° in both azimuth 

and elevation angles. The first 20 extracted radiation centers are plotted in Fig. 6(a). The 
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strength of the radiation centers is represented by different colors. We observe that the 

dominant platform scattering comes from the edge diffraction from the bow of the ship 

platform and the corner structure formed by the cylinder and plate. Note that a few 

radiation centers due to the edge diffraction are slightly off the platform. This is due to 

the limited resolution of the matching pursuit algorithm. Once the sparse representation 

is generated, the radiated field can be easily reconstructed using the radiation centers. The 

original radiated field at kz = 0 is plotted in Fig. 6(b) as a function of the kx and ky, where 

the wave numbers kx, ky and kz are defined in (2). The field reconstructed from the first 20 

radiation centers is shown in Fig. 6(c). The two patterns match well over both frequency 

and angle. The correlation index between the two figures is found to be 0.958. 

We have demonstrated that radiation patterns from complex platforms can be well 

represented by a very sparse set of radiation centers. The resulting model can be used to 

spatially pinpoint cause-and-effect on the platform and could play an important role in 

antenna placement and optimization. We shall continue to refine this algorithm and 

examine more complex topside structures. We also plan to utilize this model for 

addressing the antenna coupling issue once the CEM capability for simulating antenna 

coupling characteristics is in place. 

Other exploratory topics. Several additional studies have been carried out during 

the past year and are described below. They serve as possible launching points into more 

relevant and focused efforts for the present program in the next year. First, we have 

begun to investigate the resonant behaviors of antenna-platform configurations. This 

topic is motivated by the interest of the Navy SPA WAR Center in HF antennas where 

ship body resonances can dominate the antenna frequency characteristics. In the lower 

frequency regime, the scattering phenomenology differs from ray-optical characteristics. 

Consequently, the time-of-arrival model we have utilized successfully may no longer be 

efficient in this regime. We have carried out a preliminary study to understand the 

scattering phenomenology in these configurations. Furthermore, we are exploring a 

hybrid scheme to achieve a sparse parameterization of the data using a combination of (i) 

a rational function model for those regions on the structure dominated by resonant 

effects, and (ii) a exponential model for those regions on the structure dominated by ray 



optical phenomena. We hope to devise a robust parameterization procedure so that both 

types of physical mechanisms can be accurately described. 

An important issue related to the study of resonant region using an iterative CEM 

solver like FISC is that when the platform exhibits strong resonance effect, the iteration 

number required for an accurate solution can become large. A good preconditioner for 

the moment matrix is needed to alleviate this problem. We have been investigating the 

use of wavelet packet basis for the sparsification of moment matrix [13,14]. We have 

recently extended this work by devising an approximate-inverse preconditioner to the 

moment equation using the wavelet representation [15,23]. We plan to further investigate 

this topic, which may become important for simulating near-resonant structures. 

C. FOLLOW-UP STATEMENT: 

In the coming year, we will continue our research along the three research topics 

outlined above by: (i) extending our work on frequency extrapolation to near-field 

radiation characteristics, (ii) extending the frequency-aspect interpolation algorithm for 

multiple frequency-antenna position study, and (iii) refining the radiation center 

extraction algorithm. In addition, we plan to initiate several new research topics in: (i) 

applying the new FISC code for mixed wire-facet bases for antenna self-impedance 

study, (ii) investigating antenna mutual coupling issues and exploring the usage of CEM 

data in array calibration, and (iii) devising an improved model for describing both ray- 

optical and resonance phenomena in antenna-platform interactions. 
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ABSTRACT: An angular extrapolation technique is proposed to acceler- 
ate the multiangle RCS calculation of iterative MoM solvers. Based on 
high-frequency electromagnetic phenomenology, an exponential model is 
proposed to parameterize the induced currents on the target. The model 
parameters are extracted from MoM results at a limited number of 
angular samples using the superresolution algorithm ESPRIT. The RCSs 
at a wide extent of angles are then extrapolated. This approach is tested 
on two numerical examples. Comparison with the bistatic approximation 
shows the improved accuracy of the algorithm. © 1999 John Wiley & 
Sons, Inc. Microwave Opt Technol Lett 20: 229-233, 1999. 

Key words: angular extrapolation; method of moments; superresolution 

I. INTRODUCTION 

It is well known that when the method of moments (MoM) 
equation is solved using direct matrix inversion or LU decom- 
position, multiple right-hand-side (RHS) solutions can be 
generated efficiently. Unfortunately, the computation com- 
plexity of OCA'3) for such direct solvers is usually too high 
when the target size is bigger than a few wavelengths. To 
overcome this difficulty, many iterative MoM solvers have 
been developed by using iterative matrix-vector multiplica- 
tion. Among them, the fast multipole method (FMM) [1] and 
the multilevel fast multipole method (MLFMM) [2] can re- 
duce the computational complexity of the matrix-vector mul- 
tiply operation from 0{N2) to 0(N15) and CKAMogAO, 
respectively. However, for applications such as generating 
multiangle radar cross section (RCS) data, these iterative 
procedures have to be repeated for each RHS or look angle. 
There are some existing techniques to speed up iterative 
matrix solvers for multiple RHS problems [3, 4]. Nevertheless, 
the computational gain usually comes at the expense of more 
memory requirement. In this paper, we propose an angular 
extrapolation scheme to extrapolate angular RCS data from 
the solutions at a few densely sampled angles. These solu- 
tions can be obtained by iterative MoM solvers, either with or 
without the accelerated multiple RHS algorithms. 

An often-used angular extrapolation (or interpolation) 
approach for RCS is the so-called bistatic approximation 
[5-7], which is based on the physical optics assumption. 
Under this assumption, the monostatic scattered data are 
approximated by the bistatic scattered data at nearby angles. 
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Because bistatic data are relatively inexpensive to compute, 
additional monostatic data can be readily generated using 
this approach. However, since physical optics does not take 
into account multiple interactions among different parts of 
the target, the bistatic approximation breaks down when 
applied to scattering data of targets that are dominated by 
multiple scattering mechanisms. 

The angular extrapolation algorithm we will present here 
is based on a multiple scattering model. We parameterize the 
current on the target, which is available from the MoM 
solution, using an exponential, multiple-excitation model. The 
parameters of this model are extracted from a few angular 
samples via the ESPRIT superresolution algorithm [8]. Once 
these parameters are obtained, the angular-dependent model 
of the induced current at each point on the target is con- 
structed. Thus, the induced current over a wider angular 
extent can be extrapolated and the multiangle RCS can be 
calculated. This approach can be considered as a dual of the 
model-based frequency extrapolation that we have devised 
earlier [9]. In the following section, the multiple-excitation 
model will be described in detail. In Section III, numerical 
examples are presented to illustrate the performance of our 
extrapolation algorithm, and comparisons are made against 
the bistatic approximation. 

II. MODEL-BASED EXTRAPOLATION 

The key to the success of any model-based extrapolation is a 
good model that coincides with the underlying physical mech- 
anisms [9, 10]. We postulate that in high-frequency scattering, 
the induced current at each point 5 on the target is excited 
by multiple-arriving scattered waves, as shown in Figure 1. If 
we denote the down-range direction with respect to the 
incident wave as x and the cross-range direction as y, the 
current at S can be written as 

We now make a key assumption about the current model 
as the incident angle is varied. We assume that all intermedi- 
ate scattering points for each mechanism remain fixed as the 
incident angle is varied, as illustrated in Figure 1. This 
assumption has been found to be fairly accurate for ray-opti- 
cal fields under small angular variation fll], and leads us to 
the following current model as a function of incident angle: 

N 

J(6,S) =   £^.(0)e-2y*<*.cos<H->.,sin »+/,>. (2) 

i= I 

If we further use the small-angle approximation cos 0=1 
and sin 6 ~ 6, and assume that At is independent of angle, 
then 

N 

J(6,S)= £'V~2y*}''e'_2y*u' + '') (3a) 
i= l 

N 

= £^.e-2'*"». (3b) 

We observe that the above equation is in the form of a 
sum-of-exponential model, with linear phase dependence with 
respect to the incident angle. 

With the above multiple-excitation model in hand, we set 
out to extract the parameters {A{,yt) at each point on the 
target from a limited number of angular samples calculated 
using the MoM. We apply the superresolution algorithm 
ESPRIT [9] for this purpose due to its robustness in the 
presence of noise. ESPRIT is based on the data model 

F«U=  ZA'ie-''2ky-+n(em), *2.•■-.** 

(4) 

7(5)=  E^V" 2jkd, + /, (1) 

where N is the number of scattered waves arriving at 5 and 
k is the free-space wavenumber. In the above definition of 
the path length dh we let (x^yj be the first hit point on the 
target due to the incident wave, and let /,. be the total 
intermediate path length of the multiple-scattering mecha- 
nism. Note that the two mechanisms illustrated in Figure 1 
are both two-bounce mechanisms. For a single-bounce physi- 
cal-optics mechanism, /, = 0 and (*,,}»,) simply corresponds 
to the point S. 

(x*yj 

0/ 91 

(xvyi) 

ymmr 
Figure 1    Multiple-arrival model of the scattering mechanisms 

where n(-) denotes additive white Gaussian noise and the 
samples are uniformly spaced. If the data sequence obeys this 
ideal model exactly and the number of sampling points M is 
infinite, ESPRIT can estimate N and resolve each A) and yt 

without any error. For finite-length data, the minimum num- 
ber of samples to perform the estimation is M > 2N + 1, 
and the accuracy of the estimated parameters will depend on 
the length of the available data. At frequencies above target 
resonance, the first few interactions dominate the scattering 
phenomenon, and only a small N is needed to adequately 
model the observed data. Therefore, by running ESPRIT 
using the MoM-generated current at M angles, the angular- 
dependent current model in (3b) can be obtained. Note that 
the ESPRIT processing is carried out at each point on the 
target. Once such a model is found, we can extrapolate the 
data to determine the current at other angles. The total 
scattered field versus angle can thus be calculated by integrat- 
ing the extrapolated current. For large angle extrapolation, 
we find that it is more accurate to use the original sin 6 
factor in place of the 0 term in the phase of the current 
model in (3b). To both satisfy the Nyquist sampling criterion 
for ESPRIT and achieve the maximum calculation efficiency, 
the angular sampling interval is normally chosen as n/2kym3x, 
where ymax is the maximum target dimension in cross range. 

III. NUMERICAL RESULTS 

To demonstrate the performance of the angular extrapolation 
algorithm, two numerical examples are presented based on 
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2-D MoM results. The first example is a 2-D dihedral corner 
reflector (shown in the inset of Fig. 2) that is 40 cm along the 
horizontal face and 60 cm along the vertical face. The fre- 
quency of the incident wave is 3 GHz. The RCS data versus 
angle are calculated by the MoM code between 25 and 65° 
(measured from the horizontal face). The data are plotted as 
the solid curve in Figure 2. A relatively isotropic scattering 
pattern is observed within this angular range. Using eight 
points evenly sampled between 43 and 50°. we carry out our 
extrapolation algorithm. The model order TV used is 3. The 
extrapolated RCS data are plotted as the dashed curve in 
Figure 2. The ESPRIT result coincides well with the exact 
result, unless the extrapolation angles are too far removed. If 
we use the bistatic approximation with the incident angle at 
45° to approximate the monostatic RCS in this range, the 
RCS data fall apart rapidly away from the center angle, as 
shown by the dash-dotted line in Figure 2. This is because 
the dominant double-bounce mechanism is not included in 
the bistatic model. Even if we calculate the bistatic field at 
eight points evenly distributed in the angular aperture and 
linearly interpolate the monostatic RCS in between, the 
result still deviates from the exact result once the interpola- 
tion angle is away from those calculated angles. This is 
illustrated in Figure 3. 

A second example is a (circular cylinder)-(plate) scatterer 
shown in Figure 4. The diameter of the cylinder is 42 cm, 
and the length of the plate is 2 m. The distance between 
the origin of the cylinder and the plate is 62 cm. The calcula- 
tion frequency is 3 GHz. In this structure, strong multiple- 
scattering mechanisms between the cylinder and the plate 
dominate the backscattering. The exact RCS data calculated 
by the MoM are plotted as the solid curve in both Figures 5 
and 6. They consist of a total of 81 points from 25 to 65°. 
Only eight points between 43.5 and 47° are used for the 
ESPRIT extrapolation. The model order N used is 3. The 
result is plotted as the dashed curve in Figure 5, which agrees 

62 cm 

K 

42 cm 

2m 

Figure 4   Geometry of the (circular cylinder)-(plate) target 

well with the exact result. It is observed that some deviations 
occur when the extrapolation angle is beyond the range 
35-55°. Using eight points evenly distributed in the angular 
aperture [25°, 65°], the bistatically interpolated result is plot- 
ted as the dashed curve in Figure 6. It can be seen that the 
result deviates significantly from the exact result between any 
two calculated angles. The beatings in the RCS curve are not 
well predicted. 

IV. CONCLUSION 

A model-based extrapolation algorithm has been proposed to 
generate multiangle RCS for iterative MoM solvers. An expo- 
nential model is used to incorporate the multiple-scattering 
mechanisms. The parameters of the exponential model are 
extracted using the ESPRIT superresolution algorithm. Once 
the model is found, it can be extended to predict the RCS at 
a wider range of angles. Numerical examples show that the 
extrapolation technique has robust performance for targets 
dominated by multiple-scattering mechanisms, while the stan- 
dard bistatic approximation usually gives poor extrapolation/ 
interpolation results for this type of target. The accuracy of 
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the present extrapolation algorithm is limited by the validity 
of the model, in which the small-angle approximation is 
implicitly assumed. It is expected that multiplicative speedup 
in time can be achieved when this algorithm is combined with 
the existing acceleration schemes for multiple RHSs [3, 4]. 
Finally, the angular extrapolation algorithm can be combined 
with previously proposed frequency extrapolation to generate 
2-D frequency-aspect data for radar image formation. These 
topics are currently under study. 
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Abstract-A synthetic aperture radar imaging technique called AC- 
SAR for antenna coupling scenarios is introduced. It is shown that an 
ACSAR image of a platform can be formed by inverse-Fourier trans- 
forming the multi-frequency, multi-spatial coupling data between two 
antennas. Furthermore, we present a fast ACSAR imaging algorithm 
that is specifically tailored to the shooting and bouncing ray (SBR) 
technique. The fast algorithm is shown to reduce the total simulation 
time by several orders of magnitude without significant loss of fidelity. 
Finally, a sparse representation of ACSAR imagery is introduced by 
extracting the point radiators in the image. By parameterizing the 
ACSAR image, it is possible to reconstruct the 3-D ACSAR image 
and the 3-D frequency-spatial data with a very sparse set of radiation 
centers. 

1. INTRODUCTION 

The electromagnetic coupling between antennas on a complex platform 
is an important issue in antenna design. For an antenna designer, it 
is useful to identify the areas on the platform that cause strong cou- 
pling between the antennas. In this work, we set out to develop an 
imaging algorithm to pinpoint the dominant scattering locations on 
the platform that give rise to antenna interactions from the coupling 
data between antennas. Our approach to this problem is based on the 
Inverse Synthetic Aperture Radar (ISAR) concept. ISAR imaging is a 
standard technique to map the locations of dominant scattering off a 
target based on the multi-frequency, multi-aspect backscattered data 
[1,2]. We have extended this concept previously to the far-field antenna 
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Figure 1. Comparison of the ASAR and the ACS AR scenario. 

radiation problem by introducing the Antenna SAR (ASAR) imaging 
algorithm [3]. An ASAR image of a platform maps the strong sec- 
ondary radiators on the platform from multi-frequency, multi-aspect 
radiation data in the far field. Such information can be useful to the 
antenna designer in mitigating platform effects. In this paper, we ex- 
tend the ASAR concept to the near-field antenna coupling problem by 
generating the Antenna Coupling SAR (ACSAR) image of the plat- 
form (see Fig. 1). By collecting the multi-frequency, multi-spatial cou- 
pling data, it is shown that an ACSAR image of the platform can be 
formed to display the dominant scattering locations on the platform. 
To achieve the required spatial diversity the data are collected on a 
2-D grid at the receiver site.' 

This paper is organized as follows. First, we derive the ACSAR 
imaging algorithm. In Sec. 2. it is shown that under the single-bounce 
and small-bandwidth approximations, a Fourier transform relationship 
exists between the multi-frequency, multi-spatial coupling data and the 
3-D locations of antenna-platform interaction. Hence, by 3-D inverse- 
Fourier transforming the coupling data, it is possible to image these 
scattering locations on the platform. This concept will be demon- 
strated by using the computed frequency-spatial data from the Shoot- 
ing and Bouncing Ray (SBR) technique [4-6]. In section 3. we present a 
fast ACSAR imaging algorithm that is specifically tailored to the SBR 
technique. By taking advantage of the ray tracing information within 
the SBR engine, we demonstrate that a direct image-domain formation 
is possible without resorting to multi-frequency, multi-spatial calcula- 
tions. The image-domain formation algorithm can be further acceler- 
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Figure 2. The geometry for ACSAR imaging. 

ated by the application of the fast fourier transform (FFT) algorithm. 
The fast algorithm is compared to the general frequency-aperture al- 
gorithm in several numerical examples. It is also shown that the total 
computation time can be reduced from hundreds of hours to minutes 
without significant loss of fidelity. In Sec. 4, we further present a sparse 
model to represent ACSAR imagery. By parameterizing the ACSAR 
imagery with a set of point radiators on the platform, it is possible to 
reconstruct the 3-D ACSAR image and the 3-D frequency-spatial data 
with a very sparse set of radiation centers. 

2. ACSAR IMAGING ALGORITHM 

2.1 Formulation 

We shall first derive the general ACSAR imaging algorithm that 
utilizes multi-frequency, multi-spatial radiation data in the near-field 
region of the platform. We assume the transmitter and receiver setup 
as depicted in Fig. 2. At the receiver site, spatial diversity on a two- 
dimensional aperture centered at (x0,0,0) is used to achieve resolution 
in the two cross range dimensions. Similarly, to achieve down range 
resolution, frequency diversity is used. In addition to the direct ra- 
diation from the transmitter to the receiver, there are contributions 
from the antenna-platform interactions. The scattered electric field at 
the receiver site due to the scattering from a point P(x{, yi,Zi) on the 
platform can be written as 
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Es(k) = A, ■ e~jkRi' ■ e~ikR* (1) 

where A{ is the strength of the scattered field. Ru is the path length 
from the transmitter antenna to P, R? is the path length from P 
to the receiver and k is the free-space wave number. Next, we will 
make two approximations to the above equation to arrive at a Fourier- 
based imaging algorithm. The first assumption, commonly used in 
ISAR imaging, is that the radiation data are collected within a certain 
frequency bandwidth that is small compared to 'the center frequency 
of operation. We will further assume that the size of the aperture at 
the receiver site is small compared to path length R<z. Combining 
these assumptions, we can approximate the phase lag in the second 
exponential term as follows: 

fci?2 — kRii + ko{y cos o.i-r z sin a* sin ßi) (2) 

where a, and ßi are defined in Fig. 2. i?2i is the distance from P 
to the center of the 2-D aperture, and the variables y and z refer to 
spatial locations in the receiver aperture. The scattered electric field 
can thus be approximated by 

Es(k,y,z) = Ai ■ e-
MRli+R2>] ■ e-jkoyCOSa> • g-^sina.sin/?,        (3) 

In the above formula, a Fourier transform relationship exists between 
the variables (k,y,z) and (R{ = Ru + i?2j> Ui = ko • cos a*. V{ = 
ko ■ sin ai sin ßi) . By taking the 3-D inverse Fourier transform of the 
scattered field with respect to k, y, and z, we obtain a 3-D ACSAR 
image of the platform as follows: 

ACSAR(i?. u, v) = IFT {Es(k, y, z)} 

= IFT {Ai ■ e~jkR ■ e~jk°-u ■ e"^0^} (4) 

= Ai • S(R — Ri) ■ S(u - Ui) ■ S(v — Vi) 

Therefore, by inverse Fourier transforming the multi-frequency, multi- 
spatial coupling data, the point scatterer P will manifest itself as a 
peak in the image at (Ri,Ui,Vi) with amplitude Ai. In practice, since 
the frequency bandwidth and the aperture size are not infinite, the 
actual spot size of the point scatterer will be inversely proportional to 
the frequency bandwidth and the aperture size. Note that we have not 
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Figure 3. The geometry for a multiple bounce mechanism. 

yet constructed the ACSAR image in the original (x, y, z) coordinates. 
However, it is straightforward to transform the ACSAR image from the 
(R,u,v) to the (x,y,z) coordinates by the following transformation 
formulas: 

x = 

y 

eg + R2 - 2 ■ R ■ XQ ■ y/TTc 

2-(x0-R- VTTt) 

(XQ - x) 

tan a •tan ß 

z = tan/? • (xo — x) 

1 + tan2 ß 
c = tan2 ß + 

tan2 a 

(5a). 

(56) 

(5c) 

(5d) 

Since the transformation is not linear, it is not easy to estimate the 
distortion effect of the transformation on the ACSAR image. This 
issue will be addressed in the numerical examples as well in Sec 4.3. 
To summarize, the ACSAR imaging algorithm consists of three basic 
steps: 
(1) Collect multi-frequency, multi-spatial coupling data Es(k,y,z), 
(2) Take the 3-D inverse Fourier transform of Es(k,y,z) to form 
ACSAR(i2,M,t;), 
(3) Use (5) to generate ACSAR(x, y, z), the image in the platform 
coordinates. 
In the resulting ACSAR image, the dominant scattering points on the 
platform due to platform interactions between the transmitter and the 
receiver will be manifested as peaks. 
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Several comments are in order. First, the present Fourier-based 
imaging algorithm is derived based on small bandwidth and small 
aperture approximations. Since these assumptions are similar to those 
made in the ISAR imaging algorithm, no attempts have been made by 
us in this paper to quantify the errors related to these approximations. 
Second, the present ACSAR algorithm is based on the single-bounce as- 
sumption. Therefore, multiple-bounce mechanisms will not be mapped 
correctly in the resulting ACSAR image. This situation is similar to 
the standard ISAR algorithm. We shall discuss how the multi-bounce 
mechanisms are manifested in the ACSAR image to guide us in im- 
age understanding. We consider an n -bounce scattering mechanism 
as shown in Fig. 3. The corresponding scattered electric field for this 
mechanism is given by 

Es(k.y.z) = A ■ e-J'fe(tript°tai+-R2n) . g-jfco-ycosa,, . e-jko-zs\nansmßn   /Q\ 

where triptotal = tripx +... + trip7l_1 corresponds to the path that the 
wave travels from the transmitter to the last hit point and R^n is the 
path length from the last hit point to the center of the aperture at the 
receiver site. By taking the 3-D inverse-Fourier transform of the above 
equation, we obtain a peak in the ACSAR image at (Ru, un.vn) where 
Rn = triptotaI + R2n,  un = k0 ■ cosan  and  vn = ko ■ sinan • sin/?n . 
We observe that this corresponds nearly to the last hit point on the 
platform. The u and v values (and the corresponding a and ß an- 
gles) correspond exactly to those of the last hit points, while the R 
value corresponds to the cumulative delay of the mechanism.   This 
means that a multiple-bounce mechanism will be mapped in the AC- 
SAR image as a point shifted from the last hit point on the platform 
in a direction opposite to R.2n , the vector from the last hit point to 
the receiver. This effect will be seen in the example next. Finally, in 
the ACSAR algorithm derivation only the scattered field is considered. 
If the total field is applied to the algorithm, the direct radiation from 
the transmitter to the receiver will be imaged at the transmitter loca- 
tion. Since this peak will likely be the strongest one in the image, it 
may pose a dynamic range problem as the other scattering mechanisms 
due to antenna-platform interactions may be overshadowed. For sim- 
ulation data, the isolation of the scattered field contribution from the 
direct antenna radiation is straightforward. For measurement data, a 
separate calibration run to measure the direct antenna radiation may 
be required to remove its contribution from the total field. 



ACSAR-antenna coupling synthetic aperture radar imaging 291 

Ay 

/ 
Tx 

(20,0,0) 
 •  -i-x 

(5,-20,-5) (15,-20,-5) 

$*» 

(5,-20,5) (15,-20,5) 

Figure 4. The geometry of the plate test example. 

210 100 210 

200 

190 1 50 

200 

190 i 
180 

* 170 

1 
i * ° ■ 

180 

A 170 
1 

160 

150 
-50 

160 

150 

140 
-100 

140 

-1 00 0 
--> V 

10 3 40    50 
-> R 

60 40    50 
~>R 

60 

(a) 

-18 -18 

-19 -19 
5 ;  

A-20 A -20 
.- ■ 

"?  ° l    m 
-"■"1"  - B 

-21 -21 
-5 I  

-22 -22 

-1 0 0 
~>z 

1C 0       10 
->x 

2C 3       10 
->X 

2C 

(b) 

Figure 5. 2-D projected ACSAR images for the plate,   (a) In (R, u, v) 
coordinates,   (b) In (x, y, z) coordinates. 
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2.2 Numerical Example 

The algorithm presented above is first tested using a simple config- 
uration shown in Fig. 4. The platform is a perfectly conducting square 
plate of size 10m by 10m. The transmitter antenna is a half-wave 
dipole (at 10 GHz) and is located 20m above the plate. A total of 32 
frequencies are computed within a 0.35 GHz bandwidth at the center 
frequency of 10 GHz. The simulation is carried out by a modified ver- 
sion of the SBR code Apatch [6]. The scattered field is collected on an 
aperture centered at (20m, 0, 0). The collection aperture consists of 
16 x 32 = 512 points, which range from -0.66m to 0.56m in 16 steps 
along the y direction and from -0.46m to 0.44m in 32 steps along the 
z direction. In the computed data only the scattered field from the 
platform is considered and the primary radiation due to the antenna is 
not included. Using the ACS AR algorithm, we first generate the 3-D 
ACSAR images in {R,u,v) domain. While applying the algorithm, a 
3-D Hanning window is used prior to the FFT operation to suppress 
the sidelobes in the image. For display purpose, the 3-D ACSAR im- 
age is projected onto the 2-D R-u, R-v and u-v plane as shown in 
Fig. 5(a). To view the ACSAR image in the platform (x,y,z) coordi- 
nates, we perform the necessary transformations in (5). The resulting 
3-D ACSAR image is then projected onto the 2-D y-z, x-y, and x-z 
planes as shown in Fig. 5(b). .The dynamic range of the images is cho- 
sen to be 35 dB. According to the geometry, we expect a peak in the 
(x, y, z) image at (10m, -20m , 0) corresponding to the specular point 
on the plate. The corresponding R. u and v values for this point are 
(44.72m, 186.4, 0). We observe from Figs. 5(a) and 5(b) that the peak 
occurs at the expected location. However, we notice that the specular 
peak is not as well focused in the xyz-plane as the ifriu-plane. This 
degradation is due to the additional (R, u, v)-to-(x, y, z) transforma- 

tion. 
As the second example, we used a much more complex test platform 

called 'Slicy\ whose CAD geometry is shown in Fig. 6. Slicy contains 
a number shapes on top of the platform including a closed cylinder, 
an open cylinder, a corner reflector and a step region. The platform 
is assumed to be perfectly conducting. A half-wave dipole is used as 
the transmitter and is placed at the origin. A total of 32 frequencies 
are computed within a 0.19 GHz bandwidth at the center frequency 
of 10 GHz.   The scattered field is collected on an aperture centered 
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Figure 6. The geometry of the test example Slicy. 

at (35m, 0, 0) . There are 32 x 32 = 1024 spatial points on the aper- 
ture, ranging from -1.14 m to 1.14 m along the y direction and from 
—0.49 m to 0.49 m along the z direction. The total computation time 
for the SBR simulation is about 160 hours on an IBM RS6000/590 
workstation. Using the ACSAR algorithm, we generate the 3-D AC- 
SAR image for the configuration. Again, a 3-D Hanning window is used 
to suppress sidelobes. The 3-D ACSAR image projected onto the 2-D 
R-u, R-v and u-v planes are shown in Fig. 7(a). Fig. 7(b) shows the 
projected ACSAR image in the platform (x, y, z) coordinates along the 
y-z , x-y and x-z planes. Also plotted in the images is the platform 
overlay. The dynamic range of the images is 35dB. We observe that 
the dominant scattering is from the middle of the platform around the 
point (17.5m, -40m, 0). This is the expected specular point on the 
platform (labeled as mechanism (i)). Also apparent is the scattering 
off the curved region between two steps (mechanism (ii)). This mecha- 
nism appears to be quite diffused in the image. We believe this is due 
to the distortion effect from the transformation in (5). A technique 
to alleviate this effect will be discussed in Sec. 4.3. We also observe 
some scattering mechanisms from the open cylinder (mechanism (iii)). 
Since the open cylinder is expected to create multiple bounces, the 
contribution in the image is shifted in the direction away from the re- 
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Figure 7. 2-D projected ACSAR images for Slicy    (a) In   {R,u,v) 
coordinates,   (b) In (i, y, z) coordinates. 

ceiver as discussed in the last section. As a result, it is located around 
the outside region of the open cylinder. Finally, the scattering off the 
top of the closed cylinder is labeled as mechanism (iv). although it is 
rather weak. 

3. FAST ACSAR IMAGE GENERATION USING SBR 

The ACSAR image formation algorithm discussed in the last section 
can be applied to either measurement or simulation data. In this sec- 
tion, we shall derive a fast ACSAR imaging algorithm specially tailored 
to the SBR technique. This is accomplished by utilizing the ray in- 
formation within the SBR ray-tracing engine to generate the ACSAR 
image without resorting to any multi-frequency, multi-spatial calcula- 
tions. We first derive an image-domain formula of ACSAR imaging [7]. 
Next, we implement a fast ray summation scheme [8,9] based on the 
image-domain formulation to reduce the total computation time. It is 
demonstrated that an ACSAR image can be simulated at a fraction of 
the time as the brute-force frequency-aperture approach. 
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3.1 Image-Domain Formulation of ACSAR Imaging 

In applying the SBR technique to the antenna-platform interaction 
problem, rays are first shot from the phase center of the transmitter 
and traced according to geometrical optics. At the exit point of each 
ray before they leave the platform altogether, a ray-tube integration 
is carried out to find the contribution of each ray to the field at the 
receiver. Under this construct, the scattered near field can be written 
as: 

Es(k, cj>. 9) = T 0- ■ d • (AA)exitS(& 0) ■ e-;k'rA (7) 
i rays 

where TA is the position vector from the last hit point A to the 
receiver. (Aj4)exit is the cross section of the exit ray tube. S(<f>, 6) 
is the normalized radiation pattern from the ray tube and C, is the 
field at the exit ray tube. For sufficiently small ray tubes, S(<f>, 9) can 
be assumed to be unity. In the image-domain formulation, we will 
assume that the frequency bandwidth is small compared to the center 
frequency and the aperture size at the receiver site is small compared 
to the path length from the last hit point to the receiver. With these 
assumptions, we have k • r A = k ■ R^ + &o cos a ■ y + ko ■ sin a sin ß ■ z . 
We further assume that the platform is perfectly conducting. (For non- 
perfectly conducting platforms, this derivation still applies as long as 
the frequency bandwidth is small.) Using these assumptions, we can 
let 

J~ ■ d ■ (AA)exit « Oi ■ e-'fc-<triP>< (8) 

where 0{ is assumed to be independent of frequency and (trip)j is the 
total path that the i' th ray traveled from the transmitter to the last 
hit point. Consequently, the scattered electric field at the receiver can 
be written as 

Es(k,y,z) =   J2  (Ji- e-MtiiPi+R2i) . g-jfco-cosQ.-y . e-jfc0-sinQisin/3,-z^9a^ 

i rays 

or by the change of variables similar to that in Sec. 2, we have simply 

Es(k, y,z)= J2ai' e~JkR* ■ e~JUi'V ' e~iVi" (%) 
i rays 

Substituting the above equation to our ACSAR imaging formula, we 
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get 

ACSAR{R.u,v) = IFT3{Es(k,y,z)} 

= J2 ^•IFT{e-J'fcH'}-IFT{e-^u*}-IFT{e-jzv'} 
i ravs 

(10) 
The inverse-Fourier transform operations in (10) can be performed in 
closed form with the result 

ACSAR{R.u.v) = J2 ai ' {2 Ak ' ejko{R~Rl) sin c(Ak(R- ifc))} 
i rays 

• {2koAy ■ sinc(Ay(u — Ui))} 

■ {2k0Az ■ sinc(Az(t' - Vi))} 

(11) 
where Ak is the half bandwidth in frequency, Ay and Az are the 
half-lengths of the aperture in y and z . respectively. We observe that 
the image-domain formulation gives the contribution of each ray to the 
total ACS AR image explicitly. Since <TJ , (x*, yi,Zi) are available from 
the ray tracing, it is straightforward to calculate the corresponding 
(Ri,Ui,Vi) values. Therefore, given (<Ji,Xi,yi, Zi) for each ray, we can 
form the ACSAR image directly by summing up the weighted 3-D sine 
functions in (11). 

3.2 Fast Algorithm 

The image-domain expression of (11) is time consuming to carry 
out. We next apply a fast ray summation scheme to speed up the 
calculation in (11).We rewrite the image domain formula as 

ACSAR(Ä, u,v)= ^2 Pi- h{R -Ri,u- u{,v - vt) (12a) 
i rays 

where pi = 8 • CTJ • k%Ak ■ Ay ■ Az and h{R, u, v) is the 3-D ray-spread 
function given by 

h(R,u,v) = ejfcofisinc(A/c- R) -smc(Ay-u) •sinc(Az-'u)      (126) 

We can cast (12a) as a convolution between a 3-D weighted impulse 
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function and h as shown below: 

ACSAR(Ä,u, v) = I Y^ Pi-S{R-Ri.u- uu v -Vi)\* h(R, u,v) 
\i rays J 

= g * h 
(13) 

To speed up the computation time of the convolution, we use an FFT- 
based fast scheme proposed by Sullivan [9]. Since the 3-D weighted 
impulse train g is not uniformly spaced, we first interpolate the func- 
tion onto a uniformly sampled grid. To ensure the accuracy of com- 
putation, we oversample the grid at Ar times the Nyquist rate. For 
the interpolation, we use a linear approximation to update the closest 
eight neighbors depending on their distances from the location of the 
original impulse. The detail of this scheme can be found in [3] and 
will not be repeated here. After applying the interpolation scheme, 
the ACSAR image can be generated by 

ACSAR{R,u,v) = IFFT3(FFT3{gs{Ku,v))-FFT3(h(R,u,v))}  (14) 

where FFT3 and IFFT3 are the three-dimensional forward and in- 
verse fast Fourier transforms, respectively. The final ACSAR(x, y, z) 
image can be generated using the transformations in (5). 

3.3 Numerical Example 

The fast approach presented above is applied to the same Slicy ge- 
ometry that was used in the frequency-aperture approach. In the in- 
terpolation grid, an over sampling ratio of N = 4 is used in all three 
dimensions to ensure the accuracy of the computation. The results are 
depicted in Figs. 8(a) and 8(b) as 2-D projected ACSAR images in the 
three principal planes. Fig. 8(a) shows the images in the {R,u, v) coor- 
dinates, while Fig. 8(b) shows the images in the (x,y,z) coordinates. 
Again, a 3-D Hanning window is applied and the dynamic range of 
the images is chosen to be 35dB. By comparing these images with the 
images that are generated by using the frequency-aperture approach 
(Figs. 7(a) and 7(b)), we observe a fairly good agreement where all 
the key features are correctly simulated. The rms error between the 
frequency-aspect result and the image-domain result in the (R,u,v) 
domain is calculated to be 2.13%. The image-domain results lead to a 
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Figure 8. 2-D projected ACSAR images for Slicy using the fast algo- 
rithm, (a) Image formed in (R, u, v) coordinates, (b) Image trans- 
formed to (x, y, z) coordinates, (c) Image formed directly in (x, y, z) 
coordinates. 

more focused image due to its small bandwidth approximation. This is 
consistent with our past experience from ISAR and ASAR algorithms. 
To show the time savings that we gain by using the image-domain 
approach, the total computation times of the frequency-aperture algo- 
rithm and the fast algorithm are compared in Table 1. The timings 
are divided into the ray-tracing time and the ray-summation time. As 
it can be seen from the table, the ray-tracing time of 9 minutes is the 
same for both approaches. Ray summation takes over 160 hours for 
the frequency-aperture approach and is the dominant portion of the 
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Ray Tracing 
Time 

Ray Summation 
Time 

Total 
Time 

Frequency- 
Aperture 
Approach 

9 minutes 161 hours 161 hours 

Fast Algorithm 9 minutes 6 minutes 15 minutes 

Table 1. ACS AR simulation time for Slicy on an IBM RS6000/590 
workstation. 

total simulation time. The fast approach reduces the ray summation 
time to only 6 minutes. 

In addition to large savings in simulation time, it is also possible to 
circumvent the image distortion effect due to the coordinate transfor- 
mation by using the image-domain formulation. This is accomplished 
by generating the ACSAR image directly in the platform (x, y, z) co- 
ordinates in (12) instead of the (R,u,v) coordinates. To find the 
correct (xi,yi,Zi) position for a multi-bounce ray, we move along the 
direction opposite to the vector from the last hit point to the receiver. 
The amount of the shift is given by the cumulative trip of the ray. 
This has been discussed earlier in the image interpretation context 
in Sec. 2.1. In this manner, the image in the platform coordinate is 
updated one ray at a time using the 3-D ray-spread function in the 
(x. y. z) coordinate system, thereby eliminating the need to perform 
the transformation in (5). Fig. 8(c) shows the result of generating the 
image directly in the (x,y,z) coordinates. We observe that all the 
features are now much more focused than those in Fig. 8(b). 

To summarize, we have demonstrated the feasibility to simulate AC- 
SAR imagery using the SBR technique very rapidly. This is achieved 
by a combination of the image-domain formulation and an FFT-based 
fast algorithm. Furthermore, we have shown that it is possible to form 
the image in the platform coordinates directly by using this approach. 
This eliminates the need to perform the required coordinate transfor- 
mation which can defocus the features in the image. 
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4. A SPARSE REPRESENTATION OF ACSAR IMAGERY 

4.1 Point Radiator Model of ACSAR Imagery 

In simulating the ACSAR image of the platform using SBR, tens of 
thousands of rays are shot onto the platform. Yet, as we can see from 
the resulting data, the ACSAR images are in fact quite sparse. This is 
because the rays interfere with each other to give rise to strong coherent 
scattering over a small, localized area on the platform. Hence, it may 
be possible to accurately represent the ACSAR image by a finite set 
of point "radiation centers" on the platform. This concept is similar 
to the scattering center representation in radar scattering problems 
[10,11]. We shall adopt a point radiator model which has the same 
form of (12a) to parameterize the ACSAR image 

ACSAR(x,y,z) =     ^     An ■ h(x - xn,y - yn,z - zn)        (15) 
n  radiation 

centers 

where h(x,y,z) is given in (12b) and An is the strength of the point 
radiator located at {xn,yn,zn) . The remaining problem is to deter- 
mine (An, xn, yn, z-n) to find a radiation representation for the image. 

4.2 Extraction Using CLEAN 

To perform the extraction process in (15), we apply the image- 
processing algorithm CLEAN. CLEAN is a well-known extraction algo- 
rithm first developed in radio astronomy [12], and has been successfully 
applied for scattering center extraction [10]. It is a robust technique 
that successively picks out the highest point in the image and removes 
its point-spread function (assumed to be the ray-spread function in our 
case) from the image. At the n th iteration of CLEAN, if the strength 
of the point scatterer is An , the 3-D residual image can be written as 

[3-D Residual Image]n+i =[3 - D Residual Image]n 

- [An ■ h(x -xn,y- yn,z - zn)\ 

The above iteration process continues until the highest point in the 
residual image falls below to a user-defined threshold. Once we extract 
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Figure 9. (a) The locations of the 150 extracted radiation centers, (b) 
2-D projected ACSAR images reconstructed by using the extracted 
radiation centers. 

the radiation centers from the image, we can reconstruct the multi- 
frequency and multi-spatial data by the formula: 

Es{k,y,z) = £ An ■ e-jhR" ■ e~]U"-y ■ e-]V"-z (17) 
n   radiation 

centers 

where (it^,^, vn) are related to (xn,yn,zn) through the transforma- 
tion described earlier. 

We apply the CLEAN extraction algorithm to the 'Slicy: example. 
We extract a total of 150 point radiators from the 3-D ACSAR image 
shown in Fig. 8(c). The locations of the extracted radiation centers are 
projected on three different 2-D planes and are shown as small circles 
in Fig. 9(a). As it can be seen from the figures, most of the radiation 
centers are located on the platform at y = —40m. The remainders are 
located on the top of tall cylinder and around the step region. We then 
reconstruct the ACSAR image using the radiation centers and they are 
shown in Fig. 9(b).   We use the same dynamic range of 35dB when 
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patterns, (a) Frequency sweep at (35, 0. 0). (b) Spatial comparison 
at 10 GHz along (35. y. 0), (c) Spatial comparison at 10 GHz along 
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plotting the images. By comparing the reconstructed ACSAR images 
to the reference image in Fig. 8(c), we see that the reconstruction 
is good. The rms error between the original and the reconstructed 
ACSAR images is calculated to be less than 0.1%. Next, we reconstruct 
the frequency and the spatial data by using the formula in (17). The 
original (solid) and the reconstructed (dashed) patterns are shown in 
Fig. 10. In Fig. 10(a), the frequency sweep comparison is made at 
the center point of the receiver. In Fig. 10(b) and 10(c), the spatial 
variation comparisons are made at the 10 GHz center frequency along 
the y-axis and along the z-axis, respectively. We observe a fairly 
good agreement for the frequency-spatial reconstruction by using the 
radiation center model. Therefore, we can represent complex coupling 
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Figure 11. 2-D projected ACS AR images based on frequency-aperture 
data, formed by first parameterizing the (R, u, v) image using CLEAN 
and reconstructing the image in the (x, y, z) platform coordinates. 

data between antennas on a platform by using only a small set of 
point radiators. Such sparse data representation may be useful for 
data compression and system simulation applications. 

4.3.    Eliminating Coordinate Transform Distortion Using 
CLEAN 

We now describe a method that takes advantage of the CLEAN al- 
gorithm to eliminate the image distortion resulting from the (R, u, v) - 
to- (x, y, z) coordinate transformation in the frequency-aperture image 
formation algorithm described in Sec. 2. In Sec. 3.3, we have already 
shown that this can be accomplished by using the image-domain for- 
mulation. However, the approach is only applicable when coupled to 
the SBR simulation. When data from measurement or other types of 
computational electromagnetics simulators are used, we must adopt a 
different strategy. Our approach is to first parameterize the image in 
the (R,u,v) coordinate system using the CLEAN algorithm. Once the 
image is parameterized by radiation centers located at (Rn,un, vn), we 
use (5) to find the corresponding {xn,yn,zn) location of each radia- 
tion center in the platform coordinate. Then, the construction of the 
image in the platform coordinate is carried out using (15). Note that 
the main advantage of this approach is that the point-spread response 
in the final platform image is well-controlled. Consequently, the dis- 
torted point-spread response in the (x, y, z) coordinates is avoided in 
the platform image. 
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As an example, we apply this methodology to the ACSAR image in 
Fig. 7(a) by extracting a total of 150 radiation centers. After trans- 
forming these radiation centers into the platform coordinates, we form 
the ACSAR image directly in the (x,y,z) coordinates. The result 
is shown in Fig. 11. By comparing the new images to the images in 
Fig. 7(b). we observe that the mechanisms are much better focused 
using this approach. It is therefore the preferred step to generate the 
final platform image using the general frequency-aperture algorithm. 

5. CONCLUSION 

The ACSAR (antenna coupling synthetic aperture radar) imaging al- 
gorithm has been introduced to map platform scattering locations in 
antenna coupling scenarios. It is shown that under the single-bounce 
and small-bandwidth approximations, a Fourier transform relationship 
exists between the multi-frequency, multi-spatial coupling data and the 
3-D locations of antenna-platform interaction. Hence, by 3-D inverse- 
Fourier transforming the coupling data, it is possible to image the scat- 
tering locations on the platform. This concept has been demonstrated 
by using the computed frequency-spatial data from the SBR technique. 
However, the algorithm is general and can be applied to other simu- 
lation data or even measurements. Furthermore, we have presented a 
fast ACSAR imaging algorithm that is specifically tailored to the SBR 
technique. By taking advantage of the ray tracing information within 
the SBR engine, we have demonstrated that a direct image-domain for- 
mation is possible without resorting to multi-frequency, multi-spatial 
calculations. The image-domain formation algorithm can be further ac- 
celerated by the application of the FFT algorithm. The fast algorithm 
has been shown to reduce the total simulation time from hundreds of 
hours to minutes without significant loss of fidelity. Finally, we have 
presented a method to extract a sparse point-radiator model to rep- 
resent ACSAR imagery. This is accomplished by parameterizing the 
ACSAR image with a set of point radiators on the platform using the 
CLEAN algorithm. Once such a sparse set of radiation centers have 
been extracted, it is possible to reconstruct the 3-D ACSAR image and 
the 3-D frequency-spatial data very rapidly with good fidelity. 
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ABSTRACT 

An adaptive approach is proposed to construct ISAR images from unevenly 

undersampled data in the angular domain. The algorithm uses an adaptive scattering 

feature extraction engine in place of the Fourier transform in the image construction 

procedure. The algorithm entails searching and extracting out individual target scattering 

features one at a time in an iterative fashion. Therefore the strong interference between 

different target scattering features can be reduced. After all the main features are 

extracted, they can be displayed in the same image plane without the aliasing effect in the 

final ISAR image. The algorithm is verified by constructing the ISAR image from the 

simulated point scatterer data as well as the chamber measurement data of the scaled 

VFY-218 airplane. 



I. Introduction 

Inverse Synthetic Aperture Radar (ISAR) imaging is a well-known tool for 

pinpointing target scattering features for signature diagnostic and target identification 

purposes. Constructing an ISAR image requires data collection in both the frequency and 

angular dimensions. If the data are evenly sampled and the sampling rate is dense enough, 

an ISAR image can be obtained by using a two-dimensional Fourier transform algorithm 

[1]. In this paper, we address the case when the angular data are unevenly undersampled. 

This scenario may arise in real-world data collection when the target is fast maneuvering 

with respect to the radar pulse repetition interval so that the angular look on the target by 

the radar is not dense enough to satisfy the Nyquist sampling rate. This will cause serious 

aliasing error in the cross range dimension if the regular Fourier transform is used. We 

propose an algorithm to overcome the aliasing effect in the cross range dimension and 

construct ISAR images from undersampled data. This algorithm can also be easily 

extended to deal with undersampling in both the frequency and angular domains. 

The algorithm uses an adaptive scattering feature extraction engine in place of the 

Fourier transform in the image construction process. The original concept of adaptive 

feature extraction was proposed in [2,3]. It has been applied to ISAR image processing in 

the joint time-frequency space for resonant scattering mechanism extraction [4], target 

motion compensation [5] and Doppler interference removal [6]. In contrast to the Fourier 

transform where the signal is projected to all the image domain bases simultaneously, the 

adaptive algorithm searches and extracts the individual target scattering features one at a 

time in an iterative fashion. When applied to the present problem, the severe aliasing 

error caused by the interference between different target scattering features can be 



avoided. Therefore, after all the main features are extracted, they can be displayed in the 

image plane without the aliasing effect in the final ISAR image. This paper is organized 

as follows. In Sec. II, we describe the adaptive feature extraction algorithm based on a 

point scatterer model. In Sec. HI, we verify the algorithm by using simulated data 

consisting of point scatterers. In Sec. IV, the algorithm is further tested using the chamber 

measurement data of the model VFY-218 airplane [7]. It is found that a reasonable ISAR 

image can be constructed from seriously undersampled data. Finally, discussions on the 

limitation of the algorithm and some conclusions are given in Sec. V. 

II. Adaptive Feature Extraction (AFE) Algorithm 

In standard ISAR image construction, the target is assumed to be a collection of 

point scattering centers. Under the small-angle approximation, the scattered field from 

the target observed versus frequency and angle can be written as: 

E(f,8) = yZO(xi,yi)e-2Jkx>cos0-2Jky<sin6 =^0(Xi, y^-2^-2^    (1) 

where 0(xt ,yj is the amplitude of the rth scattering center, k is the free space wave 

number and kc corresponds to the wave number at the center frequency. xt and y, denote 

the down range and cross range dimensions, respectively. We shall assume that the 

sampling in frequency is evenly spaced and dense enough to satisfy the Nyquist criterion. 

This is a reasonable assumption since the frequency parameter is completely controlled 

by the radar. Thus the range profile versus angle data can be generated from the 

frequency-aspect data by applying a 1-D Fourier transform (which can be implemented 



using the FFT algorithm) along the frequency dimension. We shall denote the result as 

R(x,d): 

N 
R(x,d) = ^0(xi,yi)Sx(x-xi)e 2]k^ (2) 

i=l 

In the above expression, S^x-Xi) is the point spread function due to the finite-length 

frequency domain data.   For example, for unwindowed frequency data the point spread 

function in down range is given by: 

Ak 
Sx = Ak ■ sinc[—(x - x{)] • exp(-j2kcXi) (3) 

where Ak is the frequency bandwidth. Similarly, the cross range information can also be 

obtained from angular data via a 1-D Fourier transform of R(x ,6) along the angular 

dimension. The resulting image I(x ,y) is: 

I(x ,y ) = j>* ,e)e2^y0de = fäO(xhyi)Sx(x-xi)\e
2Jk^y-y')de 

1=1 (4a) 
N 

= ^0(xi, y,- )SX (x-Xj )Sy(y- y,-) 
i=l 

where 

Sy{y-yi) = \e2^6{y-y')dd (4b) 

is the cross-range point spread function due to the finite-length angular domain data. In 

the ideal case, the target rotates at a constant velocity so that the observation angle is 

proportional to the dwell time and is sampled evenly. Thus the integral in (4b) can be 

calculated using an FFT algorithm. However, if the data are not evenly sampled in angle, 

the integration must be carried out numerically in place of the FFT algorithm. We shall 



now turn our attention to the undersampling issue. If the data are sampled densely 

enough so that the numerical integration can be carried out accurately, the integration 

result Sy should be a well localized function with its peak at y, while rapidly decaying 

away from the peak, similar to the point spread function Sx. Under this condition, the 

resulting image I(x, y) will be a clean image with good indication of the amplitudes and 

positions of the target point scattering features. However, when the data are 

undersampled, the numerical integration in (4b) will result in large aliasing error that 

shows up as high sidelobes in Sy. Consequently, the constructed image will contain 

strong interference between the scattering features. This effect can be interpreted as the 

loss of orthogonality of the Fourier bases under the undersampled condition. For the 

scattering signal from a given target, the Nyquist sampling criterion requires the 

maximum interval between two consecutive angles be smaller than n/kcy,^ where y^ is 

the maximum cross range dimension of the target. When this criterion is met, the sidelobe 

noise is outside the target region, and (4) gives the correct image of the target. Otherwise, 

the sidelobe noise will overlap with the target features, thus causing aliasing and 

corrupting the image. 

In the proposed approach, we use an adaptive feature extraction algorithm in place 

of the Fourier processing. To avoid the sidelobe interference between different image 

bases, an iterative procedure is employed. Instead of projecting the signal onto all the 

exponential bases simultaneously, we search out the strongest point scattering feature in 

the cross-range domain and remove it from the original signal. Then the search is 

repeated for the remainder signal and the point scattering features are extracted one at a 

time until the energy of the residue signal is smaller than a preset threshold. The search 



procedure is carried out by calculating the integral in (4b) for all the points in cross range 

but saving only the maximum value and position, i.e., 

[Bp,yp] = max[Ip(x,y)] (5) 
yP 

where p denotes the pih stage of the iterative procedure. The remainder signal is 

produced by subtracting out the pth feature: 

Rp+l(x,d) = Rp(x,e)-Bpe~2jkcy"6 (6) 

The convergence of the above procedure is guaranteed and the mathematical proof is 

given in [2]. The advantage of such an iterative procedure is that each time we extract out 

the strongest feature, we also eliminate its interference on the other features. It should be 

noted that unevenly sampling is a prerequisite to ensure that there is no ambiguity in the 

strongest features, since evenly undersampled data will result in multiple positions of the 

strongest features. After all the features are extracted out, we can construct an ISAR 

image using the amplitudes and positions of the point scatterers. 

III.   Test Results Using Simulated Data 

To verify the algorithm, we first simulate scattering data using 11 point scattering 

centers with different amplitudes and positions. The radar center frequency is assumed to 

be 10.4 GHz and the bandwidth is 1 GHz. The total angular observation aperture is 5°. 

The frequency sampling is fixed at 256 points. The sampling in the angular domain is 

varied to compare the performance of the algorithm. Shown in Fig. 1(a) is the ISAR image 

constructed using the Fourier transform from 128 evenly sampled points in the angular 

domain. No aliasing error occurs in the image because the angular sampling satisfies the 



Nyquist rate. However, if the same 128 points are not evenly sampled within this fixed 

angular range, the sampling no longer satisfies the Nyquist rate because some of the 

intervals between two consecutive angles is greater than TC^y«,^. Fig. 1(b) is the IS AR 

image constructed using the Fourier transform from 128 randomly sampled angular data 

points. The aliasing effect can be clearly seen from Fig. 1(b).   It behaves like sidelobe 

noise smearing across the cross range dimension. The aliasing error gets more severe 

when fewer sampled points are used. This is illustrated in Fig. 2(a), which is the image 

obtained using the Fourier transform from 64 randomly sampled points in the angular 

domain.  We next apply the AFE algorithm to the same set of undersampled data.  The 

resulting image is plotted in Fig.2(b). Comparing Fig. 2(b) with the reference image in 

Fig. 1(a), we can see that the aliasing error is removed and the amplitudes and positions 

of all the scattering center features are well restored in the image through AFE. The 

performance of the AFE is further demonstrated when the angular sampling is lowered to 

32 random points. The ISAR image constructed using the Fourier transform and the AFE 

algorithm are plotted respectively in Figs. 3(a) and 3(b).   We observe that AFE is still 

able to remove the aliasing error in the image and restores all the point scattering features 

while the image obtained using the Fourier transform is badly overwhelmed by aliasing 

error. 

IV. Test Results Using Measurement Data 

To examine the applicability of the algorithm on real target scattering data, we 

reconstruct the radar image of a model (1:30 scale) VFY-218 airplane using 

undersampled chamber measurement data [7]. The original measurement data consist of 



201 samples in a 40-degree azimuth aperture, and 401 samples in frequency from 8 GHz 

to 16 GHz. To construct an IS AR image, we first polar-reformat the frequency-aspect 

data to the (Kx, Ky) space, since the observation angular window involved is too large to 

use the small-angle approximation in (1).   (However, for full-size targets the required 

angular swath is typically small enough so that polar reformatting is not very important.) 

The reformatted data consist of 401 samples in Kx and 438 samples in Ky. For the 

observation azimuth aperture from 110 degrees to 150 degrees, the IS AR image is first 

generated by FFT to the X-Y plane and is shown with the airplane overlay in Fig. 4. The 

point scattering features can clearly be seen. Next we test our algorithm by generating an 

undersampled data set in Ky. This is approximately the same as undersampling in angle. 

(Again, for full size targets, this approximation gets better.)    Note that the original 

measurement data set is oversampled. We can downsample Ky by at most 12 times 

without violating the Nyquist sampling rate, which means at least 36 points must be 

evenly sampled in Ky. The test is conducted as follows. First we randomly choose 24 out 

of the 438 points (in this example, at [1, 27, 30, 36, 77, 79, 110, 143, 169, 199, 211, 260, 

272, 280, 289, 320, 329, 333, 367, 378, 390, 420, 438]). Note that the maximum 

sampling interval is 49 points which is much larger than the Nyquist sampling of every 12 

points. Serious aliasing occur if the regular Fourier transform algorithm is used, as shown 

by the ISAR image displayed in Fig. 5(a).  All the features are overlapped with sidelobe 

noise so that no point scattering features on the airplane can be distinguished anymore. 

Next, we apply the AFE algorithm for each range cell of the image.   The image is 

reconstructed and shown in Fig. 5(b). Comparing Fig. 5(b) with Fig. 4, we can see the 

main features of the airplane in Fig. 4 are all well reconstructed in Fig. 5(b).    We do 



observe some noisy spots outside the target at the lower dynamic ranges in Fig. 5(b). 

This low-level noise occurs at about 25dB down from the key features and presents a 

dynamic range limitation of the present AFE algorithm. We also notice that the weak 

dispersive cloud over the right wing of the airplane due to the exhaust duct in Fig. 4 does 

not appear fully in Fig. 5(b). The possible reason is that the algorithm assumes a point- 

scatterer basis, so dispersive returns may not be well reconstructed. The same test has 

been done for another set of observation angles. This time the radar observation angle is 

in the front of the airplane from 10 degrees to 50 degrees. The original IS AR image for 

this angle is plotted in Fig. 6. The images reconstructed from the undersampled data using 

the Fourier processing and the AFE are plotted respectively in Figs. 7(a) and 7(b). Again 

we observe a good reconstruction of the key scattering features in Fig. 7(b). 

V. Conclusions and Discussions 

An adaptive feature extraction algorithm has been proposed in place of regular 

Fourier processing in ISAR image construction from unevenly undersampled data. Based 

on a point scattering model of the target, the Nyquist sampling criterion could be 

overcome using this adaptive algorithm. The algorithm has been successfully tested using 

both simulated data and chamber measurement data. The images reconstructed from 

unevenly undersampled data agree very well with the original image without aliasing 

error. The algorithm has also been tested on measured data from in-flight targets with 

good success. 

Three remarks are in order. First, although we have focused on the angular 

undersampling issue, the AFE algorithm can be easily extended to two dimensions to 



process undersampled data in both the frequency and angular domains. Second, we expect 

the performance of the AFE algorithm to be strongly dependent on how well the model 

used reflects the real physical phenomenon. In this paper, the point scatterer model is 

assumed for AFE, which is a coarse approximation of real target scattering. It is also 

possible to apply AFE based on more sophisticated models such as point scatterers with 

frequency dependence. In that case, the basis functions in AFE can be extended to 

include a broader dictionary. The tradeoff is expected to be better performance at the 

expense of algorithm complexity. Third, as we have observed, the dynamic range the 

AFE algorithm can achieve is limited. The reason is that the manner in which the 

scattering features are selected in the algorithm is not without error. Both the amplitude 

and position of the strongest basis are in fact contaminated by sidelobes of the other 

weaker bases. Possible ways to improve the dynamic range, such as incorporating a 

relaxation procedure to modify the previously found scattering features [8], are currently 

being investigated. 
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Fig.l. (a) Simulated IS AR image from 128 points evenly sampled in the angular 
domain using Fourier transform, (b) Simulated IS AR image from 128 points 
randomly sampled in the angular domain using Fourier transform. 
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Fig.2. (a) Simulated ISAR image from 64 points randomly sampled in the angular 
domain using Fourier transform. (b)Simulated ISAR image from 64 points 
randomly sampled in the angular domain using the AFE algorithm. 
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Fig.3. (a) Simulated ISAR image from 32 points randomly sampled in the angular 
domain using Fourier transform. (b)Simulated ISAR image from 32 points 
randomly sampled in the angular domain using the AFE algorithm. 
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Fig.5(a) The ISAR image constructed at 130 degree azimuth from randomly 
undersampled data using Fourier transform. 
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Fig.5(b) The ISAR image constructed at 130 degree azimuth from 
randomly undersampled data using the AFE algorithm. 
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Fig.6 The ISAR image constructed at 30 degree azimuth from the original data 
using FFT. 
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Fig.7(a) The ISAR image constructed at 30 degree azimuth from randomly 
undersampled data using Fourier transform. 
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Fig.7(b) The ISAR image constructed at 30 degree azimuth from randomly 
undersampled data using the AFE algorithm. 
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Abstract 

A methodology based on the genetic algorithm (GA) is proposed to determine the 

equivalent impedance boundary condition (IBC) for corrugated material coating 

structures. In this approach, rigorous solutions of the reflection coefficients at a number 

of incident angles are first calculated using a periodic method of moments (MoM) solver. 

The IBC model is used to predict the reflection coefficients at the same observation 

angles. The model coefficients are then optimized using GA so that the difference 

between the approximated and the MoM-predicted reflection coefficients is minimized. 

The genetic algorithm proves efficient in obtaining an optimal IBC model. The resulting 

IBC model can be readily incorporated into an existing computational electromagnetics 

code to assess the performance of the corrugated coating when mounted on complex 

platforms. 



I. Introduction 

It is well known that the impedance boundary condition (IBC) approximation is an 

efficient way to model complex structures such as material coatings and sub-skinline 

features [1-3]. It replaces the original volumetric structure with a surface impedance so 

that the problem dimension is reduced by one. Thus, large savings in computational 

resources can be achieved in the analysis of the original problem. However, to determine 

a simple BBC for an arbitrary structure that is valid over a wide range of incident angles, 

polarizations and frequencies is a non-trivial task. In this paper, we set out to develop a 

methodology to determine the equivalent D3C model for a corrugated coating structure 

backed by a conducting surface (see Fig. 1). The corrugation of the surface is assumed to 

be periodic in one dimension along the x-axis. Of interest is an IBC model that is valid 

over a large range of incident angles in both the 6 and <p directions. Our objective is to 

establish a robust methodology such that the resulting IBC model can be used in place of 

the actual coating structure in subsequent analysis and design involving complex 

platforms. 

The problem at hand is difficult since the scattering characteristics of the corrugated 

surface is strongly dependent on polarization and incident angle. The standard EBC used 

for flat coatings accounts for neither the aniostropic nor the angular behavior of the 

scattering characteristics of the corrugated surface. Some improved impedance boundary 

conditions have been proposed in the literature, including the tensor impedance boundary 

condition (TIBC) [1] and the generalized impedance boundary condition (GBC) [2],[4]. 

TEBC usually works only for a very limited range of incident angles. GIBC improves the 

accuracy of the IBC model by including higher order derivatives of the fields on the 



surface. However, it cannot be easily implemented in existing MoM solvers since it 

requires further reformulation in the integral equation. A resistive boundary condition 

(RBC) has been reported that works well over large incident angles for 2-D planar 

periodic surfaces [5]. However, it is limited to surfaces with very small periods. 

Furthermore, the choice for the position of the equivalent impedance surface is not 

obvious for the corrugated structure. 

Our proposed approach to this problem is based on the genetic algorithm (GA). First, 

we compute the reflection coefficients from the corrugated surface over a number of 

incident angles and polarizations using a periodic method of moments (MoM) solver [6]. 

The resulting reflection coefficients constitute our reference data base. Next, a simple 

periodic EBC model is proposed, from which we can derive an expression for the 

reflection coefficients. In the GA step, we optimize the model coefficients so that the 

difference between the IBC-predicted and the MoM-predicted reflection coefficients is 

minimized. GA searches the entire parameter space in a way similar to natural evolution 

and arrives, after many generations, at the best parameters for the model. 

This paper is organized as follows. In Section II, the MoM solution of the problem, 

the IBC model formulation and the GA optimization are discussed as the steps of the EBC 

determination. Numerical results are provided in Section III to verify the effectiveness of 

the approach in a number of corrugated geometries. A 3-D scattering example is also 

given to demonstrate the utility of the resulting IBC model. 

II. Methodology for Determining the Optimal IBC Model 



In this section, we describe the proposed methodology for determining the equivalent 

IBC of a corrugated coating using the genetic algorithm. In the first step, the reflection 

coefficients from the coating are computed using the MoM at multiple incident angles to 

serve as the reference data of the model. The MoM solution for the corrugated coating 

structure in Fig. 1 has been formulated earlier in [6]. The formulation entails dividing one 

cell of the grating into different homogeneous regions according to the material layers as 

shown in Fig. 2 (a). Boundary integral equations are first obtained for each region. Field 

continuity at region interfaces and periodic boundary conditions at cell boundaries are 

then enforced. The fields in the top half-space are expanded into a sum of Floquet 

harmonics and are matched to the fields in the lower region so that the reflection 

coefficients can be found. 

In the next step, a periodic IBC model is proposed, from which we can derive an 

expression for the reflection coefficients. In the final step, the optimal parameters for the 

IBC model are obtained by minimizing the mean squared error between the two sets of 

reflection coefficients based on the genetic algorithm. These steps are described in detail 

below. 

A. Periodic IBC model 

The equivalent IBC relating the tangential electric and magnetic fields for a planar 

coated surface can be written as [1]: 

E. 

E, 

Z.,    Z. 

Z      Z 
XZ XX 

H. 
(1) 

We shall adopt this model for the corrugated problem due to its simplicity and usefulness 

for our applications. The model parameters will then be optimized to emulate the 



properties of the exact structure. Note that since the corrugated surface exhibits 

anisotropic scattering characteristics, the equivalent IBC must also in general be 

anisotropic. Therefore, the cross impedance terms Zxx and Zzz are kept in our formulation 

to assess their importance. The boundary impedance Zzz, Zzx, Zxz, and Z^ are in general 

functions of incident angle and spatial position. For the IBC model to be useful for 

subsequent electromagnetic analysis, however, it is much preferable to model the 

boundary impedances as functions of spatial position only. We cannot prove theoretically 

the existence of such a model for an arbitrary corrugated structure. Instead, the 

applicability and limitation of this approach will be explored numerically in Section III. 

In our IBC model, the periodic grating structure with period p as shown in Fig. 2 (a) 

is replaced by an equivalent impedance boundary condition which also has a period p, as 

illustrated in Fig. 2 (b). Each surface impedance term can be expanded into a Fourier 

series. Since the cross impedance terms Z„ and Zxv are usually very small, we shall treat 

them as constants and only expand the impedances Z,t and Zx. as 

.IK 
-J—nx 

Zsc = ^ane    p    ,     Zxz=^bne   '    . (2) 
rt=- 

Therefore, to fully describe the EBC model, we must determine the Fourier series 

coefficients {an} and {bn}. 

B. Solution to the forward problem of scattering by the IBC model 

Next, we derive the reflection coefficients resulting from the plane wave scattering 

from the IBC model given above. Under plane wave incidence where 

k'xQ =kosm6s'm0 ,     k'y0 =-k0cosO and    k[0 =k0sir\8cos(p , 



each component of the tangential electric and magnetic fields at the impedance surface 

can be expanded into a sum of Floquet harmonics [7]. For example, the tangential electric 

field in the z direction is expanded as 

E^Eie-^+^E'^e-*'* (3) 

where 

kxn=kx0+n— 
P 

is the propagation constant of the nth order harmonic along the x-direction. This Floquet 

harmonic   is   a  reflected   wave   with   propagation   constants   (kxn,   kr
yn,   kz),   where 

k^ =^jk2_jc2_ic^ with the square root taken as positive real or negative imaginary. 

The superscripts i and r denote respectively the incident and reflected field throughout 

this paper. The harmonic term ei0Xe~iKl is suppressed in (3) and y is set to zero at the 

impedance surface for convenience. Assuming that the coefficients of the higher order 

Floquet harmonics are negligible, and applying this to other tangential field components, 

we get 

F = Fie-jk'oX+Y,Fne~Jk'"JC (4) 

n=-N 

where F can be Ez, Hz, Ex or Hx, and N is a positive integer. Substituting (2) and (4) into 

(1), and matching the coefficients of the exponential terms, we obtain a set of equations 

relating E^, Hxn and Hm 

K5M + Ell=ZsH'»+f,all_mH'm+anH
i

x+ZsHfr0 (5) 
m=-N 



for n = -N to N. 4o is the Kronecker delta. This set of equations can be written in matrix 

form as 

E'ZUN + E; = Z^H; + AH; + # >+Z,M:UN (6) 

where 

H*  = Wx,-N       ■ Hx0 H: x,N J      ' 

A = 

a0     ■ ■■   a-N    ■ ■■      a-2N 

UN ■■     «o     ■ ■       a-N 

ßlN       ■ ••       aN        ■ ■      a0  _ 

a = 

and 

«JV=[«-W    "•    "o    •■•    uNV\        u„=SnQ. 

Following the same steps, we also arrive at the relationship for Exn, Hxn and Hzn 

BH: = E; - ZJH; + £>,v - zaH'xuN - H'A (7) 

where 

B = 

~h   ■ -    b_N    ■ ■■   b_2N~ 

K   ■ -   K   ■ ■    b_N 

PlN       ■ -    bN    ■ ■     b0 _ 

b = 

For a plane wave, the tangential components of the fields in the x-direction Ex, Hx can be 

expressed in terms of Ez and Hz as: 
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H: 
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Combine (6), (7) and (8), the matrix relationship between the incident and reflected fields 

is written as 

E: 
H: 0     B 

0 A 

1 -Z I 
[T] 

' 0       a 

uv -Z^uv 

T'] + 
-uv Zxtu,v 

0        b 

T E[ 

HI 

(9) 

In (9), the z components of the scattered field can be directly related to those of the 

incident field. We can therefore define the reflection coefficients for the different 

polarizations as: 



R TM-TM E 

K 
nTM-TE _      7o"ji 

F' 
H:=O 

ßTE-TE _      H-jt 

HI 
gTE-TM   _     Ezn (10) 

£1=0 

To summarize, the reflection coefficients from the IBC model can be calculated by using 

(9) and (10) if an and bn are given. This relationship is utilized by the genetic algorithm to 

calculate the reflection coefficients for a given sample of {an} and {bn} and compare 

them with the reference data obtained from the MoM solution to optimize the model 

parameters. 

Two comments are in order. First, although the reflection coefficients are derived for 

the TE/TMZ polarizations, they can be easily transformed to the more conventional 

vertical(V) / horizontal(H) polarizations with respect to the surface. Second, we have 

assumed the position of the IBC surface is at y = 0 in the above formulation. However, if 

the IBC surface is at the position y = -d (as shown in Fig. 2(b)), a factor of e~'2KJ should 

be multiplied to each of the reflection coefficients to arrive at the correct answer. It is 

well known that in general layered coating problems, there is not a preferred position for 

the impedance surface. The solution can sometimes be improved by applying the IBC at a 

position other than a natural interface in the structure [4]. Therefore, by including the 

position of the EBC surface as an additional tuning parameter in our DBC model, we can 

further improve the accuracy of the model. 

C. Genetic algorithm to determine the optimal IBC parameters 



In the genetic algorithm, the parameters to be optimized are first encoded into binary 

form. A set of the encoded parameters is known as a chromosome. The basic idea of GA 

is to generate a pool of chromosomes, discard the bad ones, keep the best ones and let 

them evolve to produce better chromosomes. The evaluation of each chromosome is 

performed by a cost function which, in this case, is chosen to be the mean squared error 

between the MoM computed reflection coefficients and those solved using (9) and (10) 

with the (ZJJ, a„, bn, Z„, d) parameters decoded from the corresponding chromosome. 

Chromosomes in the pool are ranked according to the cost function. The best ones are 

selected in pairs to act as parents of the next generation. Reproduction of children 

chromosomes is based on specific rules of heredity and mutation. The process of 

selection and reproduction is repeated until a set of satisfactory parameters is found or the 

generation limit is reached. The flow chart of the genetic algorithms is shown in Fig. 3. 

Detailed discussion of the genetic algorithms can be found in [8]. 

In the IBC model for the corrugated coating, the parameters to be optimized are the 

coefficients of the Fourier expansion an and bn, the cross impedances Z„, Zxx and the 

position of the impedance surface d. Each of the parameters an, bn, Z„ and Zxx consists of 

a real part and an imaginary part. We assume a symmetric structure so that an=a.n, bn=b.„. 

For an approximation truncated to the Mh order, the total number of real numbers is 

4N+9. The number of bits contained in each parameter B is adjustable. If B is too large, 

the convergence of GA will be slow. If B is too small, the accuracy of the calculation will 

suffer. In the examples given in this paper, we choose B = 8 to be efficient in both speed 

and accuracy. In order to encode the unknown parameters into binary form, the minimum 

and maximum possible values of each parameter are required. For example, the values 



for the real and imaginary parts of the Fourier series an and bn are estimated to be in the 

range from -3TJ0 to 3t]0, which is found to be reasonable in the numerical examples. Thus 

the 8-bit binary 00000000 denotes -3 rj0 and 11111111 represents 3 T]0. ZK and Z^ are 

relatively small and their real and imaginary parts vary from -0.1 r}0 to 0.1 TJ0. The 

distance d is limited between the upper and lower boundaries of the coating so that the 

resulting IBC model will not cause any ambiguity in its applications. 

In the beginning of the genetic algorithm, a number of chromosomes are randomly 

generated. Each chromosome is decoded into parameters Za, an, bn, Z^ and d. The 

reflection coefficients are then computed using (9) and (10). The cost function gives the 

mean squared error between these reflection coefficients and their corresponding MoM 

solution: 

6.0     Pt.P2 

where R0 denotes the MoM solution of the reflection coefficients at a specific observation 

angle {6, (fi) and P,, P2 is the polarization TEZ / TMZ (or V / H). The fitness value of each 

chromosome is given by 

f(Ci) = ci-c2Cost(Ci) 

where c{ and c2 are constants and C, is the /th chromosome in the population. This fitness 

value is used in ranking the chromosomes and selecting of parents for the next generation 

[8-11]. There are several standard ways of selection. In this paper, the roulette wheel 

selection, in which the probability of each chromosome to be selected is proportional to 

its fitness value, is used. 



After two chromosomes are selected, they mate to generate children. This is realized 

by the process of crossover, in which a break point is randomly chosen in the 

chromosomes and the two chromosomes are switched at that point. Mutation is imposed 

at this point so that new genes appear in the next generation. The mutation rate, which is 

the portion of bits to be randomly changed, is also an important parameter in GA. 

Experiments show that a mutation rate of 5-8% is often efficient in the calculation. 

The process of evaluation, selection and reproduction is repeated until a desired mean 

squared error is achieved or a maximum generation is reached. For a population of 400 

chromosomes, the 0th order EBC (ie. N = 0) takes 10-20 generations to converge to the 

optimum while the 2nd order JBC takes 200-400 generations. 

III. Numerical Examples 

In this section, some examples are presented to demonstrate the effectiveness of the 

method. The first example is a deep, triangular grooved grating with relatively small 

period. The geometry of one cell of the grating is shown in Fig. 4 (a) where the period p 

= 0.067^ and h, = 0.22 XQ, h2 = 0.017 XQ. The coating material is MagRAM with material 

constants er = 14.35 -y'0.28 and fir = 1.525 -/1.347 at the frequency of 10 GHz. 17 

observation angles are selected which include normal incidence and the combination of 6 

= 20°, 40°, 60°, 80° and <p=0°, 30°, 60°, 90°. In this example, we set Z^ and Z„ in (1) to 

zero and N = 0 in (4) to make the model comparable with TIBC. The co-polarization 

reflection coefficients for the H-pol and V-pol incidence are plotted in Figs. 5(a) and 

5(b), respectively, and the H-V cross-polarization reflection coefficients are plotted in 

Fig. 5(c). In the figures, the x axis is divided into sections of different incident angle 6. 



which varies from 5 to 85 degrees in steps of 10 degrees. In each of the 6 section, the 

grating angle <j> varies from 0 to 90 degrees. The matching of the reflection coefficients 

between the GA approach and MoM solution is good at most incident angles, even near 

grazing incidence. The value of d is found to be 0.027Ao from the tip of the groove, or 

O-21/lo above the ground plane,. The TEBC result is also generated by using the reflection 

coefficient at normal incidence to derive the equivalent boundary condition. The 

impedance surface is placed at the plane of the conductor backing. It can be seen that the 

TIBC results deviate significantly from the reference solution away from normal 

incidence. With the same complexity of the boundary condition, GA achieves a much 

better matching because more observation points are used in the modeling and because of 

the additional degree of freedom in the position of the EBC surface. 

Next, we compare the IBC approximations with and without the cross impedance 

terms Z„. and Z„. The structure is a rectangular groove as shown in Fig. 4 (b) with a 

period p = 0.17Ao and a groove depth of hi = /i? = 0.042 Ao. The material constants are er = 

8.3-;2.4 and fir = 2-J0.9 at 10 GHz. The same observation points are used as in the 

previous example. The 0th order (N = 0) EBC is determined and the comparison between 

the reflection coefficients is illustrated in Fig. 6. With the cross impedance included, the 

accuracy of the approximation is improved. 

In the third example, the E3C of different orders are obtained for the structure shown 

in Fig. 4 (b) where p = 0.42 Ao, hi = 0.25 Ao and h2 = 0.17 Äo. The coating material is the 

same as that in example 2 but the period is much larger and the groove is deeper. The 

reflection coefficients predicted by the 0th order and 2nd order model are plotted in Fig. 

7. While the approximation by the 0th order model is fairly satisfactory, the 2nd order 



model further improves the result and the matching is better at most incident angles. The 

price of the improvement is the computation time. For the Oth order modeling, it takes 

only a few minutes for the GA to converge while the 2nd order IBC takes more than 1 

hour on an SGI 02 workstation (R10000/155MHz). Another consequence as the order of 

the model is increased is that the resulting IBC will show more spatial variation. This 

implies that when the IBC model is utilized in subsequent analysis using numerical 

electromagnetics solvers, the impedance surface must be divided more finely to faithfully 

describe the IBC. This will lead to a higher computation cost. Thus the higher order 

model is not recommended unless the Oth order one is intolerable or the period is large 

compared to the wavelength. Generally speaking, the DBC model can be improved by 

increasing the model order, whether or not the cross impedance terms exist. But with the 

cross impedance terms, the required model order is usually smaller than that without 

them. 

We further investigate a structure with a period larger than half a wavelength, which 

results in higher order Floquet mode reflection at some incident angles. The rectangular 

groove shown in Fig. 4(b) has a period p = 0.85^ and h, = h2 = 0.42 XQ. The material 

constant are er = \0.5-j2.2 and jur = 2-J0.3. The 0th and 1st order reflection coefficients 

are plotted in Figs. 8(a) and 8(b), respectively. It is shown that the Floquet modes are also 

well characterized. 

In the final example, we investigate the limitation of the EBC model. We consider a 

triangular groove shown in Fig. 4(a) with p = 0.33 XQ and hi = h2 = 0.08^. The optimal 

IBC model is found using the genetic algorithm for different coating materials. A second 

order IBC model with cross impedance terms is used and the optimal model parameters 



are determined by running GA to convergence. After the model is found, the root mean 

squared (RMS) error of the EBC-predicted reflection coefficients over the selected angles 

are computed. Fig. 9 shows the RMS error of the optimal IBC model as a function of er' 

and er", which are the real and imaginary parts of the coating relative permittivity er. fir is 

set to 1 for all the coatings. We observe that the EBC model works best for high contrast, 

high loss materials. For low contrast or low loss materials, the model error can be large. 

This behavior is very similar to conventional IBC models for planar coatings. 

We now apply our derived IBC model to a 3D scattering problem. Consider the 

corner reflector as shown in Fig. 10. The monostatic radar cross section (RCS) is 

calculated for both the uncoated reflector and that coated with the MagRAM structure 

described in example 1. The groove of the coating is either parallel or perpendicular to 

the incident direction. Both cases are computed for comparison. Note that the solution for 

such a structure is very complicated if we try to use the exact MoM formulation. Instead, 

we use the 0th order impedance boundary condition obtained from example 1 to replace 

the corrugated absorber. We assume that the size of the plate remain the same after the 

EBC replacement. The RCS is computed using FISC [12], which is a 3D MoM code 

based on the fast multipole method [13]. Comparisons of the RCS at several elevation 

angles are shown in Fig. 11 for both the H- and V-polarizations. The result shows the 

effect of coating, which lowers the overall RCS level for both polarizations. We further 

observe that a 30 dB RCS reduction can be achieved for both polarizations over the range 

of elevation angles from 20 to 75 degrees if the grating is oriented parallel to the incident 

wave. 



IV. Conclusions 

In this paper, an impedance boundary condition model is derived based on the genetic 

algorithm to approximate arbitrary corrugated coating structures in scattering problems. 

The periodic structure is replaced by a periodic EBC on a virtual surface. The boundary 

impedance and the position of the surface are optimized by matching the reflection 

coefficients to the rigorous numerical solution at a number of incident angles. Similar to 

traditional IBC models, this approach is most effective when the coating material is high- 

loss and of high contrast. The resulting IBC model generated by this algorithm can be 

incorporated into an existing computational electromagnetics code to assess the 

performance of the corrugated coating when mounted on complex platforms. 

Compared with other EBC approaches, the method described above has several 

advantages. First, the boundary impedance is assumed to be anisotropic so that the same 

model can be applied to oblique incidence from any arbitrary angles. Second, it is 

possible to build in spatial variation of the boundary impedance by adjusting the number 

of terms used in the Fourier series expansion. By using more terms, the EBC model can be 

made more accurate. In addition, the position of the impedance surface can also be 

optimized. By solving for the best position of the impedance surface as one of the model 

parameters, the accuracy of the model can be improved. 

Numerical experiments show that the EBC approximation can be improved if some of 

the parameters of the genetic algorithm are carefully chosen. These parameters include 

the incident angles at which the rigorous solution is obtained, the range of each model 

parameter and the mutation rate, etc. The genetic algorithm can also be accelerated with 

carefully chosen parameters and a well designed cost function. 
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Fig. 1. Scattering from a corrugated coating structure backed by a conducting surface 

y = 0 

Zxz(x), Z,Jx) 

(a) Original structure (b) EBC Approximation 

Fig. 2. Equivalent impedance boundary problem 
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Fig. 3. Flow chart of the genetic algorithm 
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Fig. 4. Grating geometry for the examples 
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ABSTRACT 

A radar cross section (RCS) interpolation technique in both frequency and 

aspect is proposed for the efficient prediction of radar signatures from 

computational electromagnetics data. Our approach is based on a multiple-arrival 

model for the induced current on the target. The model parameters are 

determined by an adaptive feature extraction (AFE) algorithm, which uses an 

iterative search-and-extract procedure to find the individual model features. 

Random frequency and aspect sampling is used to circumvent the ambiguity in 

selecting the features. Numerical examples are presented to test the interpolation 

algorithm. It is found that sufficient accuracy in the predicted radar features can 

be achieved even when the original computed data is sampled at 5:1 below the 

Nyquist criterion in either frequency or aspect. The algorithm is also applied to 

efficiently predict the radar image of the benchmark VFY218 airplane at UHF 

band with good results. 



I. Introduction 

Accurate prediction of the radar scattering from complex targets requires 

solving the electromagnetic boundary-value problem using numerical methods. 

This is a computationally intensive task when targets of large electrical sizes are 

involved. Recently, fast iterative solvers have emerged based on the fast multipole 

method [1,2]. These solvers have much lower computational complexity than 

traditional approaches. However, for frequency-aspect radar cross section (RCS) 

calculations, the solver has to be executed repeatedly for each angle and each 

frequency. To generate RCS data with as few electromagnetic computation points 

as possible, a number of model-based interpolation or extrapolation approaches 

have been developed to date [3-10]. In this work, we address the problem of RCS 

interpolation in frequency and aspect based on a multiple-arrival model in 

conjunction with an adaptive feature extraction (AFE) algorithm. 

Model-based techniques are based on the assumption that all the unknown 

samples to be interpolated obey the same reduced-order model as the known 

samples, from which the model coefficients can be determined. The key in the 

success of a model-based interpolation algorithm is a good model of the physical 

observable to be interpolated. The most commonly used model is the rational 

function model, which is applicable in the low frequency region. Here, we 

consider a multiple-arrival model for the induced current. This model is 

motivated by the well-known behaviors of scattering mechanisms at high 

frequencies [11], and has been applied previously to the extrapolation of RCS in 

the frequency and angular domains with good success [8-10]. 



To obtain the model parameters from the computed data, we adopt an 

algorithm termed adaptive feature extraction (AFE). AFE can be considered as a 

generalization of the CLEAN algorithm [12], and is similar to the adaptive joint 

time-frequency technique [13-15] and the matching pursuit algorithm [16] in the 

iterative manner it performs the parameterization. We have previously applied it 

to construct the inverse synthetic aperture radar (ISAR) image from radar 

measurement data that was undersampled in the aspect dimension [17]. The 

essential idea of the AFE algorithm is to search and extract out individual 

scattering features from the data set one at a time. During each iteration the 

strongest feature is identified and removed from the original data. The procedure 

is then iterated until the data is well parameterized by the feature set. In this 

manner, the interference between different scattering features, which is significant 

for undersampled data, can be largely avoided. Since the features in our model 

are exponential functions of frequency and aspect, we use random sampling 

during the collection of the original computation data in order to avoid the 

ambiguity in selecting the strongest feature. This approach is similar to the 

random array concept that uses highly thinned but randomly spaced elements to 

avoid grating lobes [18]. 

This paper is organized as follows. In Sec. 2, we introduce the multiple- 

arrival model for the current and the AFE algorithm to develop a one-dimensional 

(1-D) frequency interpolation scheme. A numerical example is given to verify our 

approach and show that the Nyquist sampling criterion can be overcome with the 

extra information  provided by the model-based approach.     In  Sec.  3, the 



interpolation algorithm is extended for 2-D frequency-aspect interpolation. Some 

numerical examples are given to illustrate the performance of the algorithm. The 

algorithm is also applied to efficiently predict the ISAR image of the benchmark 

VFY218 airplane at UHF band. Finally, some discussions and conclusions on the 

interpolation algorithm are given Sec. 4. 

II.       1-D Frequency Interpolation 

2.1. Multiple-Arrival Model and AFE Interpolation Algorithm. Before presenting 

our interpolation algorithm, we shall briefly discuss the sampling criterion for 

frequency response in electromagnetic scattering problems. Nyquist sampling 

theorem states that if the sampling rate is higher than the highest Fourier 

component of a signal, the signal can be perfectly reconstructed by interpolation 

with the sine function. In the context of electromagnetic scattering, this means 

that the frequency sampling interval for the scattered far field should be less than 

l/(Wc)» where T,^ corresponds to the total extent of the time-domain response. 

Strictly speaking, due to the finite frequency bandwidth of the data, the actual 

time extent of the signal does not have finite support and a perfect reconstruction 

is not guaranteed. However, an approximate Nyquist criterion can usually be 

defined in practice for the sampling density in frequency. 

To overcome the Nyquist sampling limitation, extra information must be 

provided by an a priori model based on the scattering physics. We utilize a 

multiple time-of-arrival model of the induced current: 

J(f)=^Bpexp(-j2xfip) (1) 



The essential idea of this model is illustrated in Fig.l. It assumes that the current 

on the target surface is induced by various incident wave mechanisms that arise 

from the direct incident field as well as the multiply scattered fields from other 

parts of the target. Each incident mechanism has amplitude Bp, which is assumed 

to be frequency independent, and a time-of-arrival tp. Thus each basis function in 

(1) is an exponential function with linear phase in frequency. This is what we 

shall also refer to as a "feature" in the data. This model has been found to work 

well in modeling the scattering mechanisms of complex targets [8-10]. It should 

be noted that the induced current instead of the scattered far field is chosen for the 

interpolation. This is because the scattered field in general requires a much higher 

model order to parameterize. Furthermore, each current element usually contains 

more localized interactions in time than the total scattered field and therefore has 

a looser Nyquist sampling criterion. The price we pay is that the interpolation 

needs to be performed for all the current elements on the target. 

If the original frequency sampling is dense enough, the basis functions in (1) 

are orthogonal and the model parameters Bp and tp can be determined using the 

Fourier transform. However, when the data is undersampled, the basis functions 

are no longer orthogonal. To avoid the interference between the non-orthogonal 

bases, we use the iterative AFE procedure instead of the Fourier transform to 

carry out the parameterization. To find parameters Bp and tp, we first project the 

sampled frequency response onto the complex conjugate of the model bases for 

all possible values of t.    We then select as the best basis the one with the 



maximum projection value Bp and the corresponding time-of-arrival parameter tp. 

This is denoted by the following equation: 

Bp = max(y p (/), exp0'2^)) (2) 

where the subscript p denotes it is at the pth stage of the iterative procedure and 

the inner product is defined as: 

(a(f)Mf)) = ^:Ia(fi)b(fi) (3) 

Once the strongest feature is found, a remainder signal is generated by subtracting 

out that feature: 

JP« (/,- ) = Jp(fi)-Bp exp(-;2#,.rp) (4) 

The above process is iterated to extract out as many features as needed to 

sufficiently parameterize the signal, i.e., until the remainder signal reaches a 

preset threshold. Note that since the stronger features are extracted out before we 

begin the search for the weaker features in the iteration process, the interference 

from the stronger features on the weaker features is reduced significantly. 

An additional problem exists due to the undersampling of the exponential 

bases used in our model. As an example, if J(f) consists of a single exponential 

function exp(-j27rft0), we expect the inner product in (2) to give the strongest peak 

at tp = t0 with amplitude Bp = 1. However, if the frequency sampling is uniform 

with sampling interval 5f, the strongest peak will occur not only at tp = t0 but also 

at tp = t0 +2nx/öf. These periodic lobes cause ambiguity in determining the true 

time-of-arrivals. To overcome this problem, we utilize random sampling to 

weaken the repeated lobes.  The idea is similar to random arrays where random 



element spacing is used to circumvent the antenna grating lobe problem in 

designing highly thinned arrays [18]. The random sampling in frequency can be 

easily realized in the present problem without computational penalty. We choose 

the frequency sampling points f, based on a uniform probability distribution in the 

frequency band of interest. Then once the current is parameterized at each point 

on the scatterer using AFE, the interpolated current function at any frequency 

within the band can be calculated using equation (1). Finally, the far field at the 

denser frequency sampling can be obtained by integrating the induced current 

over the target. 

2.2. Numerical Example. To verify the above frequency interpolation scheme, 

we consider the scattering from a two-dimensional structure consisting of three 

circular cylinders as an example. The structure is shown in Fig. 2. The reference 

RCS is computed at 71 points from 0.3 GHz to 0.65 GHz using the method of 

moments. The result is shown as the solid line in Fig. 3(a). The spiky behavior of 

the frequency response indicates that the scattered field is sampled very close to 

the Nyquist rate. For comparison, we use the values at 18 equally spaced points 

and carry out a current-based interpolation using simple spline fitting. The result 

is shown as the dash-dotted line in Fig. 3(a). Deviations between the two results 

can be seen. Next, we use the AFE algorithm to carry out the interpolation. 

Instead of 18 equally spaced points, we randomly select 18 points from the 

original 71 points. The interpolated result is plotted as the dashed line in Fig. 

3(b), which agrees with the reference calculation much better than the current- 

domain spline interpolation. This contrast is further demonstrated when we 



Fourier transform the complex frequency responses into the range profiles 

displayed in Fig. 4. In the reference range profile, the first two strong peaks in 

range are the direct scattering from the two cylinders on the left. Those smaller 

peaks further down range represent the multiple scattering due to the interactions 

among the cylinders. We can see that most of the features from the AFE 

interpolation coincide with the reference result in Fig. 4(b), while the current- 

domain spline interpolation gives strong artifacts among the real scattering 

features in Fig. 4(a). The only peaks correctly predicted by the current spline are 

the two direct reflection peaks off the two left cylinders. This is because the 

current elements contributing to those two peaks contain only the physical optics 

component. Since each current element has only a single time-of-arrival, the 

Nyquist sampling criterion is very loose for these elements. This is why the 

current at these positions can be easily interpolated even with the spline function. 

Over the rest of the target, this is clearly not the case. 

III.      2-D Frequency-Aspect Interpolation 

3.1. 2-D AFE Interpolation Algorithm. We now extend the above 1-D frequency 

interpolation algorithm to 2-D frequency-aspect interpolation. Note that for 

iterative electromagnetic solvers, the solver has to be executed for each new 

aspect angle, just as in the frequency dimension. We again utilize the multiple- 

arrival model for the induced current shown in Fig. 1, except we consider how the 

current varies as a function of both the frequency and the direction of the incident 

wave. We shall denote the down range direction with respect to the incident wave 



as x and the direction perpendicular to x, or the cross range direction, as y. The 

first scattering point on the target due to the /?th scattering mechanism is 

represented by (xp, yp). lp represents the path length from the first scattering point 

to the observation point S. It is zero for the direct incident wave. Next, we make 

a key assumption about the induced current at S as the angle of the incident wave 

is varied from the nominal direction (solid arrows) by an amount 6 shown by the 

dashed arrows in Fig. 1. We assume that the intermediate interaction path /p for 

the pth scattering mechanism remains unchanged as the incident angle is varied. 

This approximation was first introduced for ray optical fields [19], and has been 

applied in model-based angular extrapolation by us previously with good success 

[9]. Using this assumption, we arrive at a 2-D version of the multiple-arrival 

model for the current at a point S on the target: 

j(f,Q)=Y<BP expf - J—<
X

P 
cose+ypsin6+lP)] 

P 

(5) 

Under further assumption of small observation angles, (5) can be approximately 

written as: 

J(f,e)~?iBpexp[-j—((xp+lp)cose + ypsme)] 

(6) 
27tf 

= X^n exp/" - y—(V cos0 + yp sin0)] 
P 

Note that (6) reduces to (1) for 8= 0, rp = ctp, as expected. In contrast to (1), the 

basis functions in (6) are two-dimensional exponential functions of frequency and 

angle. Therefore we modify the AFE algorithm in Sec. 2 by replacing (2) by: 



Bp=     max     ljp(f,e),exp[j—(rca&0 + y&me)])        .    (7) 
r=rp,y=yp\ C / 

By searching out the parameters Bp, rp and yp, the AFE technique is thus extended 

for 2-D interpolation in both the frequency and angular domains. 

To summarize, our goal for the 2-D interpolation algorithm is to 

efficiently generate dense frequency-aspect RCS data from a small number of 

data points calculated using a fast iterative solver. The steps are first to select a 

number of randomly distributed sample points within the frequency and angular 

band of interest and solve the scattering problem for those points. Second, the 

induced current is interpolated to a denser sampling grid based on the reduced- 

order model generated from AFE processing. Third, the current is integrated to 

generate the scattered far field and the RCS. In the following numerical tests, we 

go one step further by generating the 2-D ISAR image of the target from the 

interpolated frequency-aspect data using standard ISAR processing. This is done 

to facilitate better physical interpretation of the results. 

3.2. Numerical Example. To test the frequency-aspect interpolation algorithm, 

we consider a 2-D cylinder-plate structure shown in Fig. 5. The diameter of the 

cylinder is 4.2 m and the length of the plate is 20 m. The origin of the cylinder 

and the center of the plate are separated by 6.2 m. The frequency band of interest 

is from 0.3 GHz to 0.65 GHz. Fig. 6 shows the reference ISAR image generated 

from 71x 81=5751 computed points in the frequency-aspect plane. The image has 

a dynamic range of 40 dB. In this structure, strong multiple scattering 

mechanisms between the cylinder and the plate dominate the backscattering. We 

can clearly see in the image the features corresponding to the direct scattering 



from the cylinder and the edge points of the plate, as well as the other range- 

delayed features corresponding to the multiple scattering mechanisms. (The 

detailed description of the different mechanisms can be found in [19].) For 

comparison, we collect 15x15=225 equally spaced sampling points in frequency- 

aspect and use 2-D splines to interpolate the current. Fig. 7 plots the resulting 

ISAR image from the spline-interpolated frequency-aspect data. In this image, 

only the direct scattering features (the cylinder and the edge points of the plate) 

are correctly predicted in position while all the higher-order scattering features are 

completely wrong. 

Next we construct the ISAR image using the AFE algorithm. We choose 50 

points randomly from the original 5751 points and use AFE to interpolate the 

frequency-aspect data to the dense sampling grid. The resulting ISAR image is 

plotted in Fig. 8(a). We repeat this process using AFE interpolation for 100, 200 

and 400 input points, and the resulting images are shown in Figs. 8(b), 8(c) and 

8(d), respectively. From this series of images, we can see that the strong 

scattering features are quite stable throughout while the weak features begin to 

converge as the number of input points is increased. Nearly all of the features of 

the interpolated image agree well with those in the reference image from the 

brute-force calculation. We do notice that the very weak features are 

underpredicted in the interpolated result. This is mainly caused by the 

termination threshold in the parameterization process and some signal energy is 

lost. In this example, the parameterization is stopped when the maximum 

magnitude of the remainder signal is less than 10% of the incident magnetic field 



strength. Another possible cause for the noise in the low dynamical ranges is that 

the AFE algorithm itself leads to biased estimates on the position and amplitude 

of the scattering features. This bias becomes more severe for the weaker features. 

Plotted in Fig. 9 is the correlation index between the images generated using 

AFE and the reference image versus different number of input points used in the 

interpolation. To properly reflect the contribution of the weaker features to the 

correlation index, we use the dB-scaled images in computing the correlation index 

(a constant offset is added to the images to avoid negative numbers in decibel). 

Fig. 9 shows that the 200-point mark is the turning point of the curve, after which 

the image quality does not improve further.   This is consistent with the visual 

sensation in Fig. 8.   From this example, we believe a good rule-of-thumb limit 

that   can   be   handled   by   the   AFE   interpolation   algorithm   is   about   5:1 

undersampling in both the frequency and aspect dimensions.   This criterion is 

established  based  on  a very  challenging target containing  strong  multiple 

scattering. 

3.3. Application of AFE Interpolation to VFY218 Benchmark. The interpolation 

algorithm is next applied to predict the IS AR image of the benchmark VFY218 

airplane [20]. The fuselage length of the airplane is 15.33 meters and the 

maximum width measured from the wing tips is 8.90 meters. To generate its 

ISAR image at a center frequency of 400 MHz with bandwidth 267 MHz, we use 

the fast solver FISC [21] on a Pentium II 450MHz computer. The total number of 

sampling points must be at least 40 frequency points by 40 aspect points within 

the 40-degree aperture to satisfy the Nyquist sampling criterion. The resulting 



range and cross range resolution is about half a meter. Since the calculation for 

one single frequency-aspect point takes about 3 hours (with about 80,000 

unknowns in the moment equation), the total computation time would be 200 days 

if we use brute-force calculation to generate the data. Based on the 5:1 

undersampling criterion derived in the previous example, we only compute the 

scattering problem at 62 randomly sampled points and use the AFE interpolation 

scheme to interpolate the data to all 40x40=1600 points. The computation time is 

about 8 days. The resulting IS AR image at the 130-degree (from nose-on) look 

angle is plotted in Fig. 10. For comparison, Fig. 11 shows the ISAR image 

constructed from the chamber measurement data for the same look angle. The 

target outline is overlaid on the measurement image. The measurement was 

carried out at the US Navy China Lake facility on a 1:30 scaled model at the 

frequency band of 8 to 16 GHz [20]. Comparing Fig. 10 to Fig. 11, we find that 

all the features in the measurement image are well predicted in the simulated 

image from using FISC and interpolation. The correlation index (on a dB scale) 

is 88.2 % between the two images. The sources of discrepancy in this case 

include measurement error, computation error from FISC, differences between the 

actual model used in the measurement and the CAD model used in the FISC 

calculation, and error from the interpolation algorithm. There is also an additional 

error in the measured image due to the ISAR formation procedure [22]. For the 

wide 40-degree observation aperture in the measurement, the scattered field data 

is collected on a polar grid in k-space and polar reformatting must be performed 

to generate a focused ISAR image with FFT. This process introduces additional 



error and results in a more diffused resolution cell. The predicted image, on the 

other hand, is generated directly on a rectangular grid with rectangular boundary 

in k-space using the parameterized current model and completely circumvents the 

polar reformatting step. 

As a second case study, the predicted image (generated using 62 FISC- 

computed points and AFE interpolation) for another look angle at 30 degrees from 

nose-on is shown in Fig. 12. Two measurement images are shown in Figs. 13 and 

14. Fig. 13 is from the measured data when the airplane engine inlet ducts are 

untreated and Fig. 14 is from the measured data when absorber material is 

inserted into the inlet. Since the CAD model used to carry out the simulation has 

sealed engine inlets, the cloud over the right wing in Fig. 13 due to the inlet return 

is not predicted in Fig. 12. However, the other features agree quite well. The 

more diffused spot sizes in the measured image are due to the polar-reformatting 

operation, as discussed earlier. Fig. 12 also agrees well with Fig. 14, although 

the inlet contribution is not completely removed from the measurement in the 

latter case. Furthermore, there appears to be more measurement noise in Fig. 14. 

IV.      Summary and Discussions 

A current-domain AFE interpolation technique has been developed to 

generate densely sampled frequency-aspect RCS data from a sparse set of 

computed data. The induced current on the target is modeled by a multiple-arrival 

model and the AFE procedure is applied to extract the model parameters. 

Random sampling of the original data is used to avoid the ambiguity problem 



associated with the exponential model basis. Numerical results have been 

generated to test this approach. Lastly, the algorithm has been applied in 

conjunction with a fast electromagnetic solver to predict the high-fidelity ISAR 

image of the benchmark VFY218 airplane at UHF band. The resulting images 

agree well with chamber measurement data. 

The AFE approach is found to be stable and robust. Sufficient accuracy in the 

predicted image features can be achieved even when the original computed data is 

sampled at 5:1 below the Nyquist criterion in either frequency or aspect. This 

limit was established based on a target containing very strong multiple scattering. 

Therefore, the expected time savings in using this approach is about 25:1 in 

comparison to the brute-force computation. The AFE algorithm does involve 

exhaustive search and must be carried out for every current element on the target. 

However, the time consumed in the interpolation is still relatively insignificant 

when compared to the electromagnetic computation time. 

The possible sources of error in the overall interpolation procedure include 

imperfection of the multiple-arrival model for the current and errors in the AFE 

procedure. The former includes our assumption about the frequency independence 

of the model coefficients as well as the small-angle approximations used to derive 

the model in the angular dimension. Errors in the AFE procedure can occur when 

there are too many features in the data or when the undersampling is too severe. 

The interference from the weaker features affects the determination of the strong 

features in the projection process. These biased estimates of the strong features, 

when propagated to the later stage of the iteration process, prevent the accurate 



extraction of the very weak features. This error source limits the dynamic range 

of the final interpolated data. 
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Fig. 1 The multiple arrival model for the induced current. 
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Fig.2 Geometry of the three-cylinder target. 
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Frequency (GHz) 

Fig.3 RCS versus, frequency plots, (a)current domain spline (dash- 
dotted line) vs. MoM (solid line), (b) AFE interpolation (dash 
line) vs. MoM (solid line). 



Range (Inches) 

Fig.4 Range profile comparison, (a)current domain spline (dash-dotted 
line) vs. MoM (solid line), (b) AFE interpolation (dash line) vs. 
MoM (solid line). 
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Fig.5 Geometry of the cylinder-plate target. 
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Fig.6 Referenced ISAR image generated using brute-force MoM 
calculations at 71x81=5751 points. 

Range (dBm) 

Fig.7 ISAR image generated from interpolated results using 
current-domain 2-D spline with 15x15=225 calculated 
points. 
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(C) Range (d) 
Fig.8 ISAR image interpolated using AFE from (a) 50 calculated 

points (b) 100 calculated points (c) 200 calculated points (d) 400 
calculated points. 
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Fig.9 Image correlation index between the interpolated result and the 
reference result versus the number of points used for interpolation. 
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Fig. 10 IS AR image of VFY-218 at 130 degrees from nose-on 

generated from interpolated result using AFE with 62 
FISC-computed points. 
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Fig. 11 IS AR image of VFY-218 at 130 degrees from nose-on 
generated from chamber measurement data. 
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Fig. 12ISAR image of VFY-218 at 30 degrees from nose-on 
generated from interpolated results using AFE with 62 
FISC-computed points. The CAD model used in the 
computation has sealed engine inlets. 

Range (dBsm) Range (dBsm) 

Fig. 13 ISAR image of the VFY218 at 30 degrees Fig. 14 ISAR image of VFY-218 at 30 degrees 
from nose-on generated from chamber from nose-on generated from chamber 
measurement data. The measured model measurement data. The measured model 
has open, untreated engine inlets. has absorber material placed in the inlets. 



Publication [21] 

A Frequency-Aspect Extrapolation Algorithm for ISAR 

Image Simulation Based on Two-Dimensional ESPRIT 

Yuanxun Wang and Hao Ling 

Department of Electrical and Computer Engineering 

The University of Texas at Austin 

Austin, Texas 78712-1084 

Abstract 

A frequency-aspect extrapolation algorithm is proposed to accelerate ISAR image 

simulation using fast multipole solvers. A 2-D multiple-arrival model based on high- 

frequency physics is proposed to parameterize the induced currents on the target. A 2-D 

ESPRIT algorithm is developed to estimate the model parameters from a limited number 

of computed data samples in frequency and aspect. The model is then extrapolated to 

other frequencies and aspects to arrive at broadband, wide-angle RCS data for ISAR 

image construction. This algorithm is tested using a canonical cylinder-plate structure to 

evaluate its performance. The ISAR image of the benchmark VFY-218 airplane at UHF 

band is then predicted using the fast multipole solver FISC and the 2-D extrapolation 

algorithm. The resulting image compares favorably with that obtained from chamber 

measurement data. 
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Fast Multipole Solver 



I. INTRODUCTION 

Inverse synthetic aperture radar (ISAR) imaging is an important tool for radar 

signature diagnostic and target identification [1,2]. In order to simulate the ISAR image 

of a target, it is necessary to solve the electromagnetic scattering problem at multiple 

frequencies and angles. Then by performing a two-dimensional (2-D) Fourier transform 

on the resulting frequency-aspect radar cross section (RCS) data, a 2-D ISAR image of 

the target can be constructed. In this work, we consider ISAR image simulation of 

complex targets using a full-wave numerical technique. The focus of our attention is the 

class of iterative solvers based on the fast multipole method [3,4]. These solvers have 

much lower computational complexity than traditional moment method for scattering 

problems at a single frequency and a single observation angle. For multiple frequency- 

aspect RCS calculations, however, the solver has to be executed repeatedly for each angle 

and frequency. 

To reduce the computation burden incurred by multiple frequency-aspect 

calculations, the concept of model-based parameter estimation can be applied to populate 

the required data set from a sparse set of computed data [5-12]. In particular, we have 

recently developed a 1-D frequency extrapolation algorithm [10.12] and a 1-D angular 

extrapolation algorithm [11] to predict the high-frequency RCS of complex targets. Our 

approach is based on modeling the induced current on the target using a multiple-arrival 

model that closely resembles the ray-optical behavior at high frequencies. The model 

coefficients are determined by the superresolution algorithm ESPRIT (Estimation of 

Parameters via Rotation Invariance Technique) [13. 14]. In this paper, we extend our 

algorithm to two dimensions to carry out simultaneous frequency-aspect extrapolation. 



We begin by proposing a 2-D multiple-arrival model in the frequency-aspect domain. 

Next, we implement a 2-D ESPRIT algorithm [15, 16] to estimate the model coefficients 

from a limited number of frequency-aspect current data computed using a fast multipole 

solver. Once the model is determined, the currents, and subsequently the RCS, at other 

frequencies and aspects can thus be computed. 

This paper is organized as follows. In Section II, we examine the frequency and 

angular dependency of the current phase and propose a multiple-arrival model in the 

frequency-aspect domain. In Section III, a 2-D ESPRIT algorithm is developed and 

applied to estimate the time-of-arrival and cross range parameters in the frequency-aspect 

model from a few calculated frequency-aspect samples. In Section IV, the extrapolation 

algorithm is tested on a canonical 2-D cylinder-plate structure. The result is compared 

against both the exact result and that obtained by using the well-known bistatic 

approximation in angle [12,17,18]. The extrapolated results are also generated as a 

function of the number of calculated samples to investigate the convergence of the 

algorithm. Finally, we apply the algorithm to extrapolate the RCS and generate a 2-D 

ISAR image of the VFY-218 airplane at UHF band. The extrapolated result is compared 

against the image obtained from chamber measurement data [19]. Conclusions are given 

in Section V. 

II. 2-D MODEL FOR FREQUENCY-ASPECT EXTRAPOLATION 

We shall first formulate a physical model for the current induced on the surface of 

a target due to an incident wave. The induced current at any point is in general the result 

of multiply incident waves from both the direct excitation and multiple scattering from 



other parts of the target. Therefore, we postulate that the induced current can be written 

as a sum of multiply incident waves, each with a different travel paths, as shown in Fig. 

1. If we denote the down range direction with respect to the incident wave as x and the 

cross range direction as y, the current at S as a function of frequency/can be written as 

J(f,S) = 2^Ake     c ,dk = xk+lk (1) 
k=\ 

where K is the number of incident waves arriving at S and c is the speed of light in free 

space. In the above definition of the path length dk, we let (xk, yk) be the first hit point on 

the target due to the incident wave, and lk be the total intermediate path length of the 

multiple scattering mechanism from the first hit point to point S.   Ak is the amplitude 

coefficient for each mechanism and is assumed to be frequency independent. Among the 

three mechanisms illustrated in Fig.l, mechanism 1 is the direct incident wave from the 

source. Therefore, l,=0 and (x,, y,) corresponds to point S.   Mechanisms 2 and 3 are 

respectively a once-scattered and a twice-scattered wave before arriving at S.   At high 

frequencies, this model is expected to be quite sparse, i.e., only a few terms are needed to 

adequately describe the scattering physics at an arbitrary point S on the target surface. 

This 1-D model was used to achieve frequency extrapolation at a fixed aspect angle in 

our earlier work [10,12]. 

Angular dependency can also be incorporated in the above model.   We assume 

that all the  intermediate  scattering points  and the  amplitude coefficient for each 

mechanism remain fixed as the incident angle is varied, as illustrated in Fig.l. This 

assumption was found to be fairly accurate for ray-optical fields under small angular 

variation [20].    We have also applied it to achieve angular extrapolation at a fixed 



frequency for iterative moment solvers [11]. When we combine the aspect behavior with 

the frequency model in (1), we arrive at the following model for the current as a function 

of both frequency and incident angle: 

0 iff 
K        -jJ2-(Xü cos 0+yki sin 6+lki) 

7(/,ö,5) = 2V     c (2) 

Equation (2) contains three unknowns in the phase function of each mechanism. Next we 

use the small-angle approximation cos0~l to arrive at an expression with two unknowns 

in the phase: 

J(f,8,S)»%Ake    < = £V'
(MB+

*'
>B
' (3) 

wherekx =2nfcos6/c and ky = 2nfsin6/c. Note that equation (3) can be further 

approximated to completely decouple the frequency and aspect variable: 

J(f,0,S) = ^Ake      c        e     c (4) 
k=\ 

if we use sind~6 and replace the frequency variable in the first exponential by the center 

frequency fc. Equation (4) then reduces to equation (3b) in [11] when only aspect 

variation is considered. For the 2-D extrapolation in this work, we choose to use the 

model in (3) since it is more accurate when the aspect range is large. Equation (3) is in 

the form of a sum-of-exponential model, with linear phase dependence with respect to 

both kx and ^,.  Consequently, the 2-D superresolution algorithm ESPRIT [17] can be 

applied to equally spaced kx and k^. data samples. Next, we shall describe the 

implementation of the 2-D ESPRIT algorithm to estimate the unknown parameters in the 

model. 



HI. TWO-DIMENSIONAL ESPRIT ALGORITHM 

In [16], a 2-D ESPRIT algorithm was developed for estimating the direction-of- 

arrival in 2-D antenna array problems. Here, we shall show that with some minor 

modifications, it can be applied to estimate the parameters Ak, dk and yk in equation (3). 

First, we assume that the parameters are to be estimated from known current values 

solved at M x N equally spaced samples in the kx - ky plane, where M is the number of 

samples in kx and N is the number of samples in Ic^.. These M x N samples are similar to 

the elements of a 2-D antenna array described in [16]. We define: 

pk=e-^*,     qk=e~jM^ (5) 

where Mrand Aky are the sampling intervals inland ^., respectively. If we shift the 

origin of the variables/:,, and ky to zero, we can rewrite equation (3) into a form similar 

to equation (9) of [16]: 

;«= JU Pi"'fli"'+«,-,, i = l2 M.    1 = 12 N (6) 

where zu is the current at the /th kx value and the /th k. value. sk is the modified 

amplitude coefficient for the Ath mechanism to account for the origin shift. nd is assumed 

to be white Gaussian noise, which in our case is used to model the numerical error in the 

current computation. Since ESPRIT postulates such a sum-of-exponential model with 

additive white noise, an averaging procedure has to be performed to smooth out the noise 

to obtain the correct estimate of the covariance matrix. In [16], the averaging is 

performed naturally in the time domain. However, for the problem at hand, the time 



dimension does not exist and has to be synthesized. This can be accomplished via a sub- 

array processing technique. As shown in Fig. 2, a sub-array size is chosen to be half of 

the original array. Then shifting the sub-array one data sample at a time in either kx or 

k, will result in a new sub-array, which can be considered as the array at a new time 

index. If we assume M and N are even numbers, the total number of sub-arrays that can 

be generated in this manner is(/y + l)(y + 1). The signal vectors z(t), s(t) and n(t) 

are defined as the reshaped column vectors of the rth sub-array as follows: 

z(t) = [zu(t)-z[L(t)---zn(t)--zIL(t)]T (7) 

s(0 = [*,(')    s2(t)-sK(t)]T (8) 

n(t) = [nxl(t)-nlL(t)-nn(t)-nlL(t)]T (9) 

In the above expressions,/ =— and L= — , which are the maximum row and column 

indices of each sub-array. The array covariance matrix can thus be defined exactly like 

formula (15) in [16]. Following the procedures in [16], we estimate the parameters pk 

and qk. The time-of-arrival parameter dk and the cross-range parameter yk are obtained 

using: 

dk = —4>k,       yk = -rr^k (10> 
Akx Mv 

Finally, the amplitude coefficient Ak can be generated by solving equation (3) via a least 

squares procedure. Noted that the maximum order number K permitted by the algorithm 

is: 

AT<min[(4-l)4,(4-l)4f]-l (11) 



For the scattering problems we have examined, K is usually chosen to be 3 or 4. The 

minimum number of frequency and angular samples can then be selected to satisfy the 

above criterion. 

After the coefficients Ak, dk and yk are estimated, we assume equation (3) also 

holds for other frequencies and aspects. Therefore, the induced current can be 

extrapolated to other kx and ky values of interest. An IS AR image is then generated using 

standard Fourier processing of the   kx-k>, data.    To summarize, the extrapolation 

procedure is carried out by first selecting a number of densely sampled points in a limited 

frequency-aspect range and solving the scattering problems at these points. Usually the 

computed frequencies are chosen close to the low frequency end and the aspect angles are 

centered about the central angle of interest. Second, the 2-D ESPRIT algorithm is applied 

to estimate the model parameters of the current at each point on the target surface. Third, 

the induced current is extrapolated to a wider kx and ky range based on the model 

coefficients generated from 2-D ESPRIT processing. Finally, the current is integrated to 

generate the scattered far field as a function of frequency and aspect and the results are 

used to generate the desired ISAR image. 

IV. NUMERICAL RESULTS 

To validate the frequency-aspect extrapolation algorithm, we first consider a 2-D 

cylinder-plate structure shown in Fig. 3. The diameter of the cylinder is 4.2 m and the 

length of the plate is 20 m. The origin of the cylinder and the center of the plate are 

separated by 6.2 m. The frequency band of interest is from 0.3 GHz to 0.65 GHz and the 

observation angle is from 25° to 65°. Fig. 4 shows the reference ISAR image generated 



from 7lx 81=5751 computed points in the frequency-aspect plane. The image has a 

dynamic range of 40 dB. In this structure, strong multiple scattering mechanisms 

between the cylinder and the plate dominate the backscattering. We can see in the image 

the features corresponding to the direct scattering from the cylinder (labeled as (i)), the 

front edge point of the plate (ii), and the shadow boundary cast on the plate by the 

cylinder (iii). Additionally, there are other range-delayed features corresponding to the 

multiple scattering mechanisms. For comparison, we calculate the current at 71 

frequency samples for one aspect angle, and use the well-known bistatic approximation 

[17, 18] to extrapolate the RCS to other aspect angles. Fig. 5 plots the resulting IS AR 

image from the extrapolated frequency-aspect data using the bistatic approximation. In 

this image, only the direct scattering features ((i) and (ii)) are correctly predicted while 

the higher-order scattering features are poorly predicted in either position or amplitude. 

This is because the bistatic approximation is based on physical optics, in which the 

current is assumed to be excited by only the direct incident wave. 

We next construct the ISAR image using the 2-D frequency-aspect extrapolation 

algorithm. We choose 8x8 points at the low frequency end and about the central angle 

of the original 71x 81 points. After the time-of-arrival and cross-range parameters are 

extracted by using 2-D ESPRIT, the induced currents and scattered far fields are 

extrapolated to the kx-kx aperture of the original samples.   In this manner, the ISAR 

image can be generated directly by a 2-D FFT of the kx-k}, data without the polar 

reformatting operation [2]. The resulting ISAR image is plotted in Fig. 6(a). As we can 

see, most of the features are predicted in the correct position. However, some of the 

weaker features are highly defocused. We repeat this process using 2-D ESPRIT 



extrapolation for 9 x 9, 10 x 10 and 11x11 input points. The resulting images are 

shown in Figs. 6(b), 6(c) and 6(d), respectively. From this series of images, we see that 

the strong scattering features are quite stable throughout while the weaker features begin 

to converge as the number of input points is increased. We find that the correlation 

indices between the extrapolated images and the reference image are respectively 0.72, 

0.80, 0.82 and 0.88. This shows a steady improvement as the number of input points is 

increased. For the case of 11 x 11 input points, nearly all of the features in the 

extrapolated image agree well with those in the reference image from the brute-force 

calculation. This corresponds to a 7:1 extrapolation ratio in each dimension. 

Next, we use the 2-D extrapolation algorithm to simulate the ISAR image of the 

benchmark VFY-218 airplane. The simulation is carried out using the multi-level fast 

multipole code FISC [21] on a Pentium II 450 MHz PC. The total computation time 

would take about 200 days if a brute-force calculation is carried out over the required 

41x41 frequency-aspect samples (to achieve 0.5 meter resolution in range and cross 

range). Based on the 7:1 criterion found above, the actual computation is only carried out 

for 6 x 6 = 36 points from 267 MHz to 297 MHz in frequency and 127° to 132° in aspect. 

The total computation time is 40 hours. Note that the time savings over the brute-force 

calculation is even greater than the (41/6)2 ratio. This is because these 36 points are 

chosen at the low end of the frequency band, and take far less time to compute than those 

at the high frequency end. The induced current and far fields are then extrapolated to a 

kx-ky grid from 267 MHz to 533 MHz in frequency and from 110° to 140° in aspect. The 

resulting ISAR image of the airplane at 130° is shown in Fig. 7.  Fig. 8 shows the ISAR 

image constructed from chamber measurement data at the same look angle [19]. 



Comparing these two images, we observe that nearly all of the key features in the 

measurement image are predicted in the simulated image from using FISC and the 2-D 

extrapolation algorithm. As expected, the image in Fig. 7 is much cleaner than the 

previously predicted image shown in Fig. 11 of [12], which was simulated from the 1-D 

frequency extrapolation procedure in combination with the bistatic approximation. The 

improvement is due to the fact that the multiple scattering mechanisms are correctly 

incorporated in both dimensions in our new model. There still exist some low dynamic 

range noises in the predicted image, which can be improved with more computed points. 

V. CONCLUSIONS 

A 2-D frequency-aspect extrapolation algorithm has been developed to accelerate 

ISAR image simulation using fast multipole solvers. A 2-D multiple-arrival model 

consistent with high-frequency scattering physics was proposed to model the induced 

currents on the target. A 2-D ESPRIT algorithm was developed to estimate the model 

parameters from a limited number of computed data samples in frequency and aspect. 

The model was then extrapolated to other frequencies and aspects to arrive at broadband, 

wide-angle RCS data for ISAR image construction. This algorithm has been tested using 

a canonical cylinder-plate structure to evaluate its performance. It was found that a 7:1 

extrapolation ratio in each dimension can been achieved. Furthermore, the input data 

samples can be chosen in the low frequency range for greater computational payoff. 

Lastly, the ISAR image of the benchmark VFY-218 airplane at UHF band has been 

predicted using the fast multipole solver FISC and the 2-D extrapolation algorithm. The 

resulting image compared favorably with that obtained from chamber measurement data. 



The computation time savings over the brute-force calculation was about two orders of 

magnitude. 
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Fig. 1. Multiple-arrival model for the induced current. 
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Fig. 2. Sub-array processing. 
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Fig. 3. Geometry of the cylinder-plate target. 
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Fig. 4. Reference ISAR image generated using the brute-force 
MoM calculations at 71x81=5751 points. 
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Fig. 5. ISAR image generated from 71 calculated frequency 
points and the bistatic approximation. 
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Fig. 6. ISAR images generated from the 2-D extrapolation algorithm 
using: (a) 8 x 8 calculated points, (b) 9 x 9 calculated points, 
(c) 10 x 10 calculated points, (d) 11 x 11 calculated points. 
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Fig. 7. IS AR image of the VFY-218 at 130 degrees from nose-on 

generated from the extrapolated result using 2-D ESPRIT 
with 36 FISC-computed points. 

4,1 

4 

<D       3.9 

c -    if? ■ ■<tV: 

a   3.8 
S-H €;-f 

U       3, ■f; 
3.5 

3.4 

range 
4tdBsm) 

Fig. 8. ISAR image of the VFY-218 at 130 degrees from nose-on 
generated from chamber measurement data [19]. 
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Abstract 

A frequency extrapolation technique is proposed to obtain the broad band radiation 

patterns of antenna-platform radiation problems. A frequency-dependent time-of-arrival 

model is applied to the induced current computed at low frequencies. The model 

parameters are estimated by applying the ESPRIT superresolution algorithm to the 

computed data. A pre-multiplication scheme in conjunction with the complex time-of- 

arrival estimation from ESPRIT is used to determine the additional frequency-dependent 

factors in the model. The current at high frequencies is then extrapolated based on the 

model and the radiated field is computed using the extrapolated current. The algorithm is 

applied to several 2D and 3D antenna-platform radiation problems. The extrapolated 

radiation patterns are found to be in good agreement with those generated by brute force 

computation. Since the current required for the extrapolation is only computed at lower 

frequencies, large savings in computation time and memory can be achieved. 



I. Introduction 

The numerical solution of electromagnetic scattering and radiation problems from 

complex structures is usually very computer intensive in time and memory, especially at 

high frequencies. In the standard method of moments (MoM), for example, the 

computation complexity scales as/6 where /is the frequency. Even for fast solvers such 

as the fast multipole method [1,2], the frequency scaling is still between/ and/ . Thus 

it is desirable to obtain the broad band response from the computation results at only a 

few frequencies. This can be accomplished by fitting the computed frequency response to 

a reduced-order model and extracting the model parameters from the data. Approaches 

based on model-based parameter estimation have been studied extensively and applied to 

many aspects in electromagnetic computation [3-11]. The appropriate reduced-order 

models to parameterize the physical observables are different depending on the frequency 

region of interest. In the low frequency range, the rational function model is widely used, 

while in the high frequency range, the time-of-arrival model is the preferred choice in 

characterizing the ray-optical behaviors of fields and currents. 

In this paper, we address the model-based frequency extrapolation of antenna- 

platform radiation problems. It is well known that the radiation patterns of antennas are 

strongly affected by the mounting platform. Since the simulation of such radiation 

problems is very costly to generate as a function of frequency, we set out to extrapolate 

the high frequency response from computed data at lower frequencies. Our approach 

entails fitting the computed current at low frequencies to a time-of-arrival model and 

estimating the model parameters by the superresolution algorithm ESPRIT [12]. 

Previously, this approach has been applied to radar signature prediction with good 



success [10]. In that work, the coefficients of the time-of-arrival model were assumed to 

be frequency independent. In the radiation problem, the primary radiation from the 

antenna is usually frequency dependent. Furthermore, when there exist higher-order 

multiple interactions on the platform, the amplitude of each mechanism is in general also 

frequency dependent [13-17]. Thus a more accurate model is needed to parameterize the 

current. Here we generalize the extrapolation algorithm by using a frequency-dependent 

time-of-arrival model. To extract the additional frequency dependence in this model, we 

adopt an approach similar to the one proposed in [15], which was developed to 

effectively extract the frequency dependency of the scattering mechanisms in measured 

backscattered data. Our results show that the radiation pattern can be accurately 

extrapolated based on the frequency dependent model. 

This paper is organized as follows. Section II describes the frequency-dependent 

time-of-arrivai model and the procedure to determine the model parameters. Section III 

gives a numerical example of the extrapolation algorithm using simulated data. The 

performance of the algorithm in the presence of noise is investigated and the errors in the 

estimation of model parameters are quantified. In Section IV we apply the algorithm to 

extrapolate the induced current in antenna-platform radiation problems. The radiation 

patterns predicted at high frequencies are compared against the reference MoM 

computation in both 2D and 3D platforms. Conclusions are given in Section V. 

II. Frequency Dependent Model and Determination of Model Parameters 

We postulate that the current induced on a complex platform due to illumination from 

a primary source can be well described by a time-of-arrival model at high frequencies. 



The different time-of-arrival terms correspond to the different incident wave mechanisms 

from both the direct antenna radiation and higher-order scattering from other parts of the 

platform, as illustrated in Fig. 1. Therefore, the current at an arbitrary point P on the 

platform can be expressed as: 

J(ü)) = ^ane-^ (1) 
n 

where tn is the arrival time of the nth incident wave and an is its amplitude. In [10], an 

was assumed to be independent of frequency. However, in the antenna-platform radiation 

problem, the primary radiation from the antenna is in general frequency dependent. For 

instance, the radiation strength of a dipole antenna is proportional to the co (or at112 for a 

line source in 2D problems). Furthermore, for complex platforms, the incident waves to a 

specific current element can come from the scattered fields from other parts of the 

platform. These secondary incident fields are also frequency dependent. For canonical 

shapes, their exact frequency dependencies are predicted by the geometrical theory of 

diffraction (GTD), and are in the form of of where a is the frequency factor. For 

example, the strength of the scattered field from corner diffraction has a frequency 

dependency of co , and that from edge diffraction has a frequency dependency of oi '. 

Therefore, the time-of-arrival model can be improved by incorporating the frequency 

factor: 

J(Q)) = ^anQ)a'e-J,a- (2) 
n 

where an is the frequency factor for each incident wave. Compared with (1), this model is 

better matched to the actual physics of the radiation and scattering mechanisms. 



Since we are attempting to extrapolate the frequency response to a much broader 

range, the accurate estimation of the frequency factors is critical. A small error in a will 

result in dramatic difference in amplitude at frequencies in the extrapolated region. 

However, the existing superresolution algorithms based on eigenspace decomposition 

(e.g. ESPRIT and MUSIC) apply only to signals in the form of (1). For instance, the 

ESPRIT algorithm [12] estimates (a„, tn) from uniformly sampled current data from coi to 

COM based on the data model: 

J(com) = Y,ane-10}^ +n(o)J, o)m=eo„0)2,-,0)M (3) 
n 

where n denotes additive Gaussian white noise. This model can be easily extended to 

estimate complex time-of-arrivals via analytic continuation. If we separate the real and 

imaginary part of t„, the resulting model can be written as 

JW^a^^'e-^™^ (4) 
n 

where the tilda symbol is used to indicate a complex number. This is the well-known 

complex exponential model and has been used to approximately model the frequency 

dependence in an [13]. Comparing (4) to the frequency-dependent time-of-arrival model 

(2), we find that the only difference between the two is the frequency dependency, which 

is in the form of of in (2) and e"1™""» in (4). For a narrow band signal, (4) is usually a 

good approximation of (2), and can be simply used to model the frequency dependence 

within this band. However, in order to achieve accurate extrapolation results, the complex 

exponential model is a poor choice since it is not properly matched to the underlying 

physics. 



To better determine the frequency factor a„, we adopt an approach similar to the one 

proposed in [15] based on a pre-multiplication concept. We multiply the data by an 

assumed frequency factor co~am. The data model then becomes 

J(co) = Q)-a"J(co) = ^a^-^e-^ (5) 
n 

Next, we apply ESPRIT and the complex exponential model on J{co) to estimate the real 

and imaginary parts of tn. Note that if the frequency dependence of the pre-multiplier is 

exactly matched to that of a particular mechanism, the resulting exponential term will 

have no frequency dependence. Consequently, the estimated complex time-of-arrival 

term will have a zero imaginary part. Therefore, by repeatedly pre-multiplying the signal 

using different values of am and observing the imaginary parts of the resulting 7n, we can 

detect the correct frequency dependence an whenever Im( 7n) goes to zero. The implicit 

assumption of this approach is that the mismatched terms will not significantly distort the 

estimation of Im( 7n) of the matched term. This is usually true when the arrival times 

Re( 7n) are well separated. When two or more of the arrival times are very close to each 

other, this algorithm becomes less accurate due to the interference between the 

exponential terms. The imaginary part of 7n may not vanish even when the corresponding 

frequency factor is matched by the pre-multiplication. Quantitative evaluation of the 

resulting error will be discussed in detail in the next section. Once an and t„ are estimated, 

the amplitude a„ can be easily found by the standard least squares procedure. 

III. Algorithm Testing and Error Estimation Using Simulated Data 

To test the extrapolation algorithm, we consider the signal 



7(6» = (1 + OAj)ü)-U2e-J2Sm + (4.3 - 2.2j)coU2e-JUtt> + n, ü) = 5,6,...,35 (6) 

where n is additive Gaussian white noise. The signal-to-noise ratio (SNR) is set to 10 dB. 

We now use a two-term time-of-arrival model to extrapolate the signal based on its first 

10 samples. The actual signal is plotted as the solid line in Fig. 2. The extrapolation 

results of three different models are plotted. The frequency independent model, which is 

plotted in dashed dot, is obtained by the model in (1) with real time-of-arrival tn 

determined by ESPRIT. This model matches badly with the original curve, even in the 

sampled region. The complex exponential model, plotted in dashed line, uses the model 

in (4) with complex 7n. The resulting curve is in good agreement with the actual signal 

within the sampled region, but not in the extrapolated region. This indicates that although 

the model (4) can be a very good approximation to the actual signal in the sampled 

region, it cannot be used to accurately extrapolate the signal because it does not have the 

correct frequency dependency. The frequency-dependent time-of-arrival model, which is 

plotted in dots, matches the best with the original signal in both the sampled region and 

the extrapolated region. Its parameters are estimated using the method described in Sec. 

II. 

To show the detail workings of the pre-multiplier procedure, the imaginary parts of Tn 

corresponding to the two terms in (6) are plotted as functions of o^ in Figs. 3(a) and 3(b) 

at the SNR levels of °° and 10 dB, respectively. The two curves cross zero at the 

corresponding frequency factor of -0.5 and 0.5. It can be observed that the shapes of the 

curves change when the SNR is decreased, especially for the term with smaller power 

(G^,=-0.5). However, the positions of the zero-crossing points vary only weakly as the 

SNR is decreased. 



Next, we examine the error performance of the extrapolation algorithm through 

numerical simulation. Among the three sets of model parameters an, On and tn, the time- 

of-arrival tn is directly estimated by the ESPRIT algorithm. When frequency dependent 

mechanisms are present in the signal, the estimation error in tn is expected to be larger 

due to the interference between the exponential terms, especially when two or more 

arrival times are very close to each other. In this example, we estimate the arrival times in 

a simulated signal consisting of two frequency dependent exponential terms using 

ESPRIT. As a comparison, we also determine the arrival times in a two-term frequency 

independent signal. In both signals, the power of the stronger term is five times that of the 

weaker term. For the frequency dependent signal, the two frequency factors are set to 0.5 

and -0.5 for the stronger and weaker terms, respectively. The test is performed 1000 

times subject to random noise. In Fig. 4(a), the root mean squared (RMS) error on the 

time-of-arrival estimate of the weaker term is plotted as a function of the separation 

between the two arrival times and for different SNR conditions. The dashed lines are the 

estimation errors from the frequency independent signal, while the solid lines are the 

errors from the frequency dependent signal. Both axes are calibrated in terms of the 

Fourier resolution, which is the reciprocal of the available data bandwidth. It is shown 

that the arrival time error is larger for the frequency dependent signal, especially when 

the SNR is high. However, the degradation is not too severe overall. Good estimation 

(with error less than 0.1 Fourier bin) is still achievable for signal separation well within 

one Fourier bin. 

The RMS error of estimating the frequency factor an of the weaker signal is plotted in 

Fig. 4(b) for the frequency dependent signals used in the above test. We observe that the 



error decreases as the separation between the exponential terms increases and as the SNR 

increases, similar to the trends in Fig. 4(a). When the two arrival times" are close, the 

interaction between the two terms results in error on the estimation of o^ and the error is 

strongly affected by the noise level. We can further decrease the error by imposing the 

constraint that the frequency factors are integer multiples of 1/2, as dictated by GTD. 

This is implemented when we deal with actual electromagnetic data in the next section. 

Finally we look at the extrapolation error of the entire frequency-dependent time-of- 

arrival model. An extrapolation ratio of 3 to 1 is used in the example, i.e. the frequency 

response is extrapolated to three times the original bandwidth. The percentage RMS error 

is plotted in Fig. 4(c). When the separation between the two terms is large, the 

extrapolation error behaves similar to the errors of tn and an. When the two terms become 

too close in time, we note that the error curves actually reach a maximum and then drop 

off. This is because below this point, the two exponential terms are too close to be 

resolved within the extrapolation region of interest. For larger extrapolation bandwidth, 

the position of the peak should move toward zero. 

IV. Numerical Results 

We now apply the frequency extrapolation technique to computation data from 

antenna-platform radiation problems. In the first example, a two-dimensional structure 

shown in Fig. 5 is considered. The platform is 14m in length and 3m in height. The 

antenna is a horizontal line source placed at 5m above the platform. The induced current 

on the platform is computed from 0.1 to 0.5 GHz at 21 frequency points using 2D MoM. 

The current is extrapolated to 1.3 GHz and radiated field is then computed based on the 



extrapolated current. Both the frequency-independent and frequency-dependent time-of- 

arrival models are used to perform the extrapolation, and the resulting radiated fields at 

the observation angle of 6 = 40° are plotted in Figs. 6(a) and 6(b), respectively. Also 

plotted is the reference MoM results obtained via brute force computation. The primary 

radiation of the dipole antenna is not included in the plots so that we can better observe 

the secondary radiation from the platform. It is obvious that the frequency dependency in 

the field response is not captured by the frequency-independent time-of-arrival model, 

while the field predicted by the frequency dependent model is in good agreement with the 

computed result. The time domain response corresponding to Fig. 6(b) is plotted in Fig. 

6(c). It is shown that the time-domain peaks are well characterized by the extrapolated 

field. Finally, the radiation patterns obtained through brute force MoM computation and 

frequency extrapolation are plotted as functions of frequency and observation angles in 

Figs. 7(a) and 7(b), respectively. Very good agreement is observed between the two 

figures. For a quantitative comparison, the correlation index between the two figures is 

computed using the definition 

jJE;(f,e)E2(f,d)dfde 
R = -.— :  (7) 

-\\{\E,{f,ef+\E2{f,ef)dfde 

where E/ and E2 are the radiated fields in linear scale obtained by extrapolation and MoM 

computation, respectively. The correlation index between the two figures is 0.9992 in the 

sampled region and 0.9857 in the extrapolated region. As expected, the correlation is 

lower in the extrapolated region. However, the drop off is relatively small. 

Next, we look at a 3D platform shown in Fig. 8. The antenna is a horizontal dipole 

oriented in the x direction. The induced current is computed from 0.1 to 0.36 GHz at 13 



frequencies and extrapolated to 0.7GHz. The computation is carried out using FISC [18], 

which is a 3D MoM code based on the fast multipole method. The extrapolated frequency 

and time domain responses at the observation angle $el = 30°, <paz = -60° are plotted in 

Figs. 9(a) and 9(b), respectively. Also plotted for comparison are the reference responses 

computed by FISC via brute force. The major radiation features are captured in both 

domains by the extrapolation.  In the time domain  response,  we observe that the 

amplitudes of some of the weaker peaks are not correctly predicted by the extrapolation, 

although their arrival times are estimated quite accurately. We believe this is due to the 

estimation error of cc in the current parameterization, as we expect larger errors in the 

frequency factors for the weaker time-of-arrival terms. Figs. 10(a) and 10(b) show the 

reference and extrapolated radiation patterns as functions of frequency and azimuth angle 

when the elevation angle is fixed at 50°. Good qualitative agreement is observed. The 

correlation index between the two figures is found to be 0.9980 in the sampled region and 

0.9742 in the extrapolated region, respectively. This result is a little worse than the 2D 

example because the noise level of the FISC-computed current is higher than that of the 

2D MoM code. As was shown in the last section, the extrapolation performance is 

affected by the SNR in the computed data. The computation time of the brute force 

reference results  is  about 50 hours on a Pentiumll 400MHz  PC,  while  the total 

computation time to carry out the EM computation in the sampled region and the 

extrapolation process is 7 hours. 

V. Conclusions 



In this paper, the frequency-dependent time-of-arrival model has been applied to 

extrapolate the induced current and radiation pattern in antenna-platform radiation 

problems. The model parameters are estimated by applying the ESPRIT superresolution 

algorithm to the computed data. A pre-multiplication scheme in conjunction with the 

complex time-of-arrival estimation from ESPRIT is used to determine the additional 

frequency-dependent factors. The performance of the algorithm in the presence of noise 

has been evaluated based on simulated data and errors in the estimation of model 

parameters have been quantified. Our results show that the method is quite robust. The 

algorithm has been applied to extrapolate the induced currents and radiation patterns in 

both 2D and 3D antenna-platform radiation problems. The radiation patterns computed 

from the extrapolated currents have been found to be in good agreement with those 

generated by brute force computation. 

Although the determination of model parameters is more complicated, the frequency 

dependent model show significant performance improvement over the frequency 

independent model. This is due to the improved modeling of the scattering physics. Since 

the current required for the extrapolation is only computed at lower frequencies, large 

savings in computation time and memory can be achieved. 
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Antenna 

Fig. 1. Time-of-arrival model for the induced current at point P accounts for 
the direct incident radiation from the antenna and the multiple scattered 
waves from other parts of the platform. 
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Fig. 2. Extrapolation of a simulated signal using different models. 



(b) SNR = lOdB 

Fig. 3. Variation of Im(r„) as a function of the pre-multiplication factor Om for 
the simulated signal at two different SNR levels. 
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Fig. 4(a) RMS error in estimating the time-of-arrival tn using ESPRIT. 
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Fig. 4. Error performance of the extrapolation algorithm as a function of the 
separation between two arrival times at different SNR levels. 
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Fig. 6(a) Frequency response predicted by the frequency-independent time- 
of-arrival model at 6= 40°. 
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Fig. 6. Frequency extrapolation example for the 2D platform. 
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Fig. 7. Comparison of the radiated field generated from brute force MoM computation 
and frequency extrapolation as a function of frequency and observation angle. 



Fig. 8. 3D platform geometry 
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Fig 9. (a) Frequency response predicted by the frequency dependent 
model at <bel = 30°, <paz= -60°. 
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Fig. 9. Frequency extrapolation example for the 3D platform. 
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ABSTRACT— An approximate-inverse preconditioner based on the pre-defined wavelet 

packet (PWP) basis is proposed for the fast iterative solution of electromagnetic integral 

equations. The PWP basis is designed to achieve a sparse representation of the moment 

matrix and the preconditioner is constructed by inverting the block-diagonal 

approximation of the PWP-based moment matrix and transforming the results into the 

space domain. Numerical results show that the PWP preconditioner is effective in 

accelerating the convergence rate of iterative solution to moment equations. It is also 

demonstrated that by properly designing the block-diagonal matrix and computing the 

matrix elements, the total computational complexity and memory costs for the 

preconditioner can be kept to <9(NlogN), making it applicable for the multilevel fast 

multipole method. 

Index Terms — Computational Electromagnetics, Preconditioning, Wavelet Packet Basis. 

I. Introduction 

Iterative algorithms are commonly used to solve large-scale moment equations 

resulting from electromagnetic integral equations. The computational cost of iterative 

solution is proportional to both the moment matrix-vector multiplication operation and 



the number of iterations required for a convergent solution. The multilevel fast multipole 

method (MLFMM) has been developed to reduce the time complexity and memory of the 

dense matrix-vector multiplication operation from 0(N2) to 0(NlogN) [1-3]. However, 

the total solution time remains dependent on the number of iterations required to achieve 

an accurate solution. If the scatterer contains near-resonant structures such as deep 

cavities, the moment matrix is not well conditioned and the convergence rate of the 

iterative solution can become very slow [4, 5]. In these cases, a preconditioning matrix 

[P] is desired to accelerate the convergence rate. We consider a left-preconditioning 

system: 

[P][Z]J = [P]E (1) 

where [Z] is the moment matrix, J is the unknown induced current vector and E is the 

excitation vector. To achieve the best preconditioning, [P] should be as close to the 

inverse of [Z] as possible. Hence, [P] is called an approximate-inverse preconditioner. In 

this work, we set out to construct an approximate-inverse preconditioner [P] that satisfies 

the following conditions: 

(a) [P] is an accurate approximation to [Z]"1 to be an effective preconditioner. 

(b) The total computational complexity and memory requirement to construct the 

preconditioner are of 0(NlogN). 

(c) The total computational complexity and memory requirement to implement the 

preconditioning operation in (1) are of (9(NlogN). 

Conditions (b) and (c) are set to keep the complexity of the preconditioning on par with 

that of the MLFMM, making our preconditioner applicable for the MLFMM. The 

traditional  preconditioning  methods,   such  as   incomplete  LU  factorization  (ILU), 



Frobenius-norm-based approximate inverse and polynomial preconditioners could be 

effective [6, 7]. But they are computationally too complicated to meet conditions (b) 

and (c). In [5], an approximate-inverse preconditioner was constructed by inverting a 

block-banded form of the original moment matrix. Low complexity was maintained by 

choosing a bandwidth that is independent of problem size. 

Our approach to the problem is to derive an effective preconditioner meeting 

conditions (a)-(c) based on the wavelet packet basis [8]. With the conventional 

subsectional basis, [Z] in (1) is dense, making it difficult to find an effective 

approximate-inverse preconditioner. However, if we can transform the moment equation 

to a new basis to make the transformed moment matrix sparse and diagonal dominant, it 

will be much easier to find an effective preconditioner. We have recently proposed the 

Pre-defined Wavelet Packet (PWP) basis for the efficient representation of moment 

matrices [9, 10]. The PWP basis was designed to match the oscillatory nature of the 

Green's kernel in the integral equation. Numerical results showed that the PWP- 

transformed moment matrices are strongly diagonal dominant, and have about 0(NlogN) 

non-zero elements for large-scale problems. In this paper, we shall demonstrate that an 

effective approximate-inverse preconditioner in the space domain can be derived from 

the PWP basis with no more than 0(NlogN) computational or memory cost. It is 

worthwhile to point out that there have been some recent works on using the conventional 

wavelet transform to precondition linear systems for iterative solutions [11-14]. 

However, the requirements for computational cost and memory are at least <9(N2) to 

implement the wavelet transform and the preconditioning operation.   In this work, we 



overcome the 0(N2) complexity and memory bottlenecks by computing the PWP 

preconditioner directly from the PWP basis functions [10]. 

This paper is organized as follows. In Section II, we give a brief review of the 

PWP basis and its representation of the moment matrices. In Section III, we describe the 

design and construction of our approximate-inverse preconditioner in the space domain 

from the sparse PWP-based moment matrix. We show that the total cost for the 

construction and preconditioning operation can be kept under 0(NlogN). Numerical 

results are presented in Section IV. Finally we draw some conclusions in Section V. 

II. PWP Basis and Its Representation of Moment Equations 

Wavelet packet basis is a set of orthonormal functions derived from the shift and 

dilation of a basic wavelet function, and can be considered as a generalization of the 

conventional wavelet basis [15]. From the point of view of function space 

decomposition, the wavelet packet basis space is generated from the decomposition of 

both the scaling function space and the corresponding wavelet function space. Let us 

assume that \|/(x) is the wavelet packet basis function with the finest spatial resolution 

available for signal representation. Using the "two-scale equations," we can express the 

wavelet packet basis functions in the next scale as [16]: 

k (2) 

k 

where {h(k)} and (g(k)} are the impulse responses of two quadrature filters H (low-pass) 

and G (high-pass), respectively. The functions in the next scale become coarser in spatial 

resolution and finer in spectral resolution after the filtering and down-sampling in (2). 



The same procedure can be applied recursively to the outputs of (2) into subsequent 

scales. Conversely, the decomposition results in (2) can also be used to reconstruct the 

original sequence by using another pair of quadrature filters P and Q, which are the 

mirror filters of H and G, respectively. This reconstruction procedure can be expressed 

as: 

V(x) = Zp(x-2k)yfl0(k)+Zq(x-2k)iirl(k) (3) 
* k 

where {p(k)} and {q(k)} are the impulse responses of P (low-pass) and Q (high-pass), 

respectively. The functions become finer in spatial resolution and coarser in spectral 

resolution through filtering and up-sampling in (3). 

A complete and orthogonal wavelet packet basis can be generated from a spectral 

decomposition tree that starts from an initial mother function \y(x) with the finest spatial 

resolution by using recursive two-channel filtering and down-sampling in (2).  It can be 

shown that the decomposed functions at the outermost branches of the tree satisfy 

orthogonality and completeness for any decomposition trees, and thus constitute a 

wavelet packet basis set [17]. In this context, the conventional wavelet transform (CWT) 

basis can be considered as a special case of the wavelet packet basis when the 

decomposition tree grows along only the lowest frequency branch.   However, we have 

shown in [18] that the structure of the CWT tree is not optimal for representing the 

moment matrix from electrodynamic integral equations.   Instead, we have proposed a 

special wavelet packet tree for electrodynamic problems [9, 10].  This class of wavelet 

packet bases, which we term the pre-defined wavelet packet (PWP) basis, has a spectral 

decomposition tree that zooms in along the free-space wave number k). The motivation 

for this tree structure is to ensure that the basis is well-matched to the oscillatory nature 



of the Green's function kernel in the integral equation. Figs. 1(a) and 1(b) show 

respectively the conventional wavelet decomposition tree and the PWP decomposition 

tree for N=32. In the PWP tree, the center frequency of its deepest branch is as close as 

possible to ko. Detailed discussion on the construction of the PWP basis can be found in 

[10]. 

Once the PWP basis is defined, it is straightforward to transform the original 

moment equation into the new basis representation as follows: 

[Z]J = E (4) 

where [Z] = [M]T[Z][M] (5) 

J = [M]TJ (6) 
E=[M]TE (7) 

[M]T denotes the transpose of [M], and is the PWP transformation matrix. It changes the 

original expansion/testing functions from the standard subsectional bases into the PWP 

bases.  Note that    [M]T is equal to [M]"1 since [M] is an orthonormal transformation. 

[Z], J, and E are the moment matrix, induced current, and excitation vector 

represented in the PWP basis, respectively. Our numerical results from [10] showed that 

the transformed moment matrix under the PWP basis is very sparse. In particular the 

number of above-threshold elements in the transformed moment matrix grows at a rate of 

1 3 0(N ' ) for small-sized problems, and approaches 0(NlogN) for large-scale problems. 

Furthermore, the significant elements in [Z] are located mainly along the diagonal or 

near-diagonal positions. Unfortunately, the exact locations of the significant elements are 

difficult to predict. Consequently, the complexity of the algorithm in solving the 

complete moment equation is still hampered by an N2 computational bottleneck, since 



every element of the matrix must be computed to determine whether it is small enough to 

be discarded. However, for the proposed preconditioning application in this paper, we 

shall show in the next section that an effective approximate-inverse preconditioner can be 

constructed by computing only those elements within the diagonal blocks. 

HI. PWP-Based Approximate-Inverse Preconditioner in the Space Domain 

We will first outline our approach to constructing the PWP-based preconditioner. 

Since the PWP transformed moment matrix [ Z ] is very sparse and diagonal dominant, 

we approximate [Z] by a block-diagonal matrix [Zbd] that consists of the near-diagonal 

terms of [Z].    The approximate-inverse preconditioner [P]  defined in (1) is then 

constructed by inverting the block-diagonal matrix [ Z bd] and transforming the resulting 

matrix back to the space domain: 

[P] = [M][Zbdr'[M]T (8) 

Therefore, the preconditioned moment equation becomes: 

[M] [ Z bd]-' [M]T[Z] J = [M] [ Z M]-
1
 [M]TE (9) 

The inverse of the block diagonal matrix [ Z bd] is simply the inverse of its individual 

diagonal blocks, and the inverted matrix [Zbd]"' remains block diagonal. By properly 

choosing the block sizes of [Zbd], we can limit the computational cost of the inversion 

while maintaining the effectiveness of the preconditioner. 

The actual implementation of the preconditioner will now be considered. If we 

solve equation (9) using an iterative algorithm such as the conjugate gradient method, the 

complexity of each iteration is proportional to that of the product between the matrix 

[M], [Zbd]"1, [M]T or [Z] and a vector. The product [Z] and a vector can be implemented 



using the MLFMM algorithm with 0(NlogN) complexity and memory requirement. 

Because the PWP transformation matrix [M]T has about 0(NlogN) non-zero elements, 

the multiplication of [M]T or [M] with a vector is also of 0(NlogN) in complexity. 

Therefore, if we can limit both the number of non-zero elements in [Zbd]"1 and the 

complexity of constructing [Zbd]' to 0(NlogN), the total cost per iteration in (9) will 

remain at 0(NlogN). 

Our design of the block-diagonal matrix [Zbd] is shown in Fig. 2. The blocks are 

designed so as to capture the most significant elements in the PWP-transformed moment 

matrix [Z]. The block-diagonal matrix consists of the following: (i) a block centered 

about the spectral frequency ko with block size Mi, (ii) a set of diagonal blocks in the 

remaining upper-left region with block size M2, and (iii) a set of diagonal blocks in the 

lower-right region with block size M3. The number of diagonal blocks with size M2 is 

[(N/2- Mi)/ M2], and that with size M3 is [(N/2)/ M3]. The block from (i) is usually the 

densest part of [ Z ], since its elements correspond to the interactions between PWP bases 

with the longest spatial extent and spectral frequency close to ko. They tend to have the 

strongest interaction with each other. The blocks from (iii), on the other hand, are nearly 

diagonal, since their elements correspond to the interactions between PWP bases with the 

highest spectral frequency and the shortest spatial extent. Therefore, we generally choose 

block sizes with M] > M2 > M3. Furthermore, as N is increased we keep the sizes M2 and 

M3 fixed, but let Mi grow slightly with problem size at a rate of NI/3 to capture even more 

of the dominant elements in [Z]. This growth rate is chosen to ensure that the cost of 

inverting the block remains bounded by N, as the cost of the inversion is proportional to 

the cube of the matrix dimension.  The inverse of [ Z bd] is equivalent to the inverse of 



each of the blocks of [Zbd] in Fig. 2. Therefore, under our construct, the total 

computational complexity to invert [ Z bd] is proportional to N and the resulting number of 

nonzero elements in [Zbd]"1 is also proportional to N. 

Next, we discuss the computation of the required elements in [ Z M]. Each element 

Z(m, n) of the matrix [Z] can be directly expressed as [10]: 

Z(m,n) = Y^Vm(i)G(iJ)vSJ) (10) 
'   J 

where G(i, j) is the free space Green's function, i and j represent the indices of the 

discretization grid in the space domain, and \j/k is the k-th PWP basis function. It can be 

seen from (10) that the computational complexity for each matrix element is proportional 

to the product of the spatial supports of the two corresponding basis functions. The 

support of a PWP basis function is related to the depth of the branch in the PWP 

decomposition tree. Let us assume that the basis functions corresponding to branches in 

the first stage of the PWP decomposition tree have spatial support L (i.e., the order of the 

wavelet filter). The complexity for computing a diagonal (or near-diagonal) element is 

then L . The support of a PWP basis function doubles if it corresponds to the branches 

on the next deeper stage in the decomposition tree [10, 16]. Therefore, the spatial support 

of the basis functions generated from the tree branches at stage k is 2k"'L, and the 

complexity to compute an element from basis functions in the same stage is (2k_1L)2. 

Since the maximum possible depth of the wavelet decomposition tree is Kmax=log2N, the 

cost for computing an element using bases from this maximum depth would then be N2. 

However, as we shall discuss in the next section, the best preconditioning performance is 

often achieved using a tree with depth much less than the maximum possible depth. 

Similar observation has also been reported in [11].   Therefore, if we impose that the 



maximum depth index of the PWP decomposition trees is a small number K, the number 

of operations needed to compute an element in [ZM] will be between L and 4 " L . 

With 0(N) elements in [ZM], the total complexity to compute the matrix [Zj is about 

0(N) operations. 

To summarize, we have designed a preconditioner based on the block-diagonal 

approximation of the PWP-transformed moment matrix. The steps to construct and carry 

out the preconditioning operation entail: (i) computing the elements in the diagonal 

blocks of [Zbd] one term at a time using (10), (ii) inverting [Zbd] one block at a time to 

arrive at its inverse [Zj1, and (iii) carrying out the preconditioning operation by a 

successive set of sparse matrix-vector multiplication operations in (9). It is shown that 

the computational complexity of the each of the three steps can be limited to within 

0(NlogN) operations, thus making the proposed preconditioner compatible with the 

MLFMM in solving moment equations. 

IV. Numerical Results 

Two two-dimensional targets, an open-ended inlet and a bent structure shown in 

Fig. 3, are chosen to test our PWP preconditioner. With a large depth-to-opening ratio 

(l/m), the moment matrices from the scatterers are ill-conditioned, and the convergence 

rate is slow if an iterative solver is used to solve the systems. For the inlet structure, if the 

thickness parameter t is equal to zero, the electric field integral equation (EFIE) is use to 

construct the moment equation. Otherwise, the combined field integral equation (CFIE) 

is used. For the bent structure, EFIE is always used to find the solution. The 

discretization of the structure is chosen to be fixed at 0.1 wavelength while the electrical 



size of the structure is varied. In all cases the incident plane wave is E-polarized and 

makes an angle of 45° with respect to the inlet opening. 

Fig. 4 is the moment matrix [Z] represented by the PWP basis for the inlet 

structure with dimensions l:m:t=l5:l:l and N=256. It is shown in logarithmic scale 

without any thresholding. We find that the most significant elements in the transformed 

matrix match the patterns we chose for the PWP preconditioner in Fig. 2. The densest 

portion of the matrix is located in the upper left region, with the strongest elements near 

the ko spectral position. The wavelet filter used to generate the PWP basis functions is 

Daubechies filter with order 16 (with 7 vanishing moments). 

We use both the conjugate-gradient squared (CGS) method and the biconjugate 

gradient stabilized (BiCGSTAB) method. Both of them are effective iterative solvers for 

linear equations with nonsymmetric coefficient matrix [19]. CGS is used in most of the 

cases in this work since it converges faster than BiCGSTAB. However, we use the 

BiCGSTAB to compare the detailed convergence rates of the different preconditioners, as 

the convergence behavior of the CGS is not very smooth. In the application of the 

iterative solvers, the initial current guess is J0=0, and the stopping criterion used is when 

the relative residual error \rn||/||r01| < 10-6, where r„ = E-[Z]Jn and r0= E. 

We first examine how the iteration number changes as the electrical size of the 

scatterer is increased in the following three cases: 

Case 1: The scatterer is the inlet structure shown in Fig. 3(a) with / = 0 and 

l:m=15:\. The moment equation is formulated with the EFIE. For the PWP 

preconditioner, we choose M2=32, M3=l, and Mi grows at a rate of \I~N starting from 32 

atN=128. 



Case 2: The scatterer is the inlet structure with l:m:t=\5:l:l. The moment 

equation is formulated with the CFIE. The PWP preconditioner is constructed the same 

way as that in Case 1. 

Case 3: The scatterer is the bent structure shown in Figure 3(b) with /:m=12:l. 

The EFIE is used, and the parameters for the PWP preconditioner are chosen as: M2= 

M3= 32, and Mj grows at a rate of \IN starting from 32 at N=128. 

The iteration numbers required versus problem sizes are shown in Figs. 5(a)-(c) 

for Cases 1-3, respectively. We increase the problem size by proportionally increasing 

the electrical size of the scatterer while keeping the discretization interval fixed at 0.1 

wavelength. The results for the moment equation without any preconditioning and that 

with the PWP preconditioner are plotted. For comparison, we also show the results from 

a simple block-diagonal preconditioner in the space domain. It is constructed by 

inverting the block-diagonal form of the original space-domain moment matrix. The 

block sizes are uniform and the total number of non-zero elements is kept the same as 

that used in the PWP preconditioner. We find that the iteration number grows very 

rapidly with the problem size if no preconditioning is applied. With the PWP 

preconditioners applied, the iteration numbers are significantly reduced and they increase 

much more slowly with problem size. Furthermore, the PWP preconditioner performs 

better than the equivalent space domain preconditioner. This is because the PWP 

preconditioner captures more of the energy in the original moment matrix. Note that the 

CFIE results shown in Fig. 5(b) have smaller iteration numbers than the results from the 

EFIE cases shown in Figs. 5(a) and 5(c). However, the effectiveness of the PWP 

preconditioner is still apparent.     In Fig. 5(c), we also plot the results using the 



conventional wavelet transform (CWT) basis instead of the PWP basis. The CWT 

preconditioner is constructed in exactly the same way as the PWP preconditioner, except 

the approximate matrix is formed from the elements of the CWT transformed moment 

matrix rather than the PWP transformed one. We observe that the PWP preconditioner 

outperforms the CWT preconditioner since the PWP basis can more efficiently represent 

the moment matrix. Although not shown, similar comparisons between the PWP and 

CWT preconditioners are also found for Cases 1 and 2. 

Figs. 6(a)-(c) show the convergence behaviors for a fixed problem size (N=512) 

for Cases 1-3, respectively. The BiCGSTAB algorithm is used as the iterative solver. In 

each figure, the residual error is plotted as a function of the number of iterations for the 

moment equation without any preconditioning, with the space domain and/or the CWT 

preconditioner, and with the PWP preconditioner. We observe that, with the PWP 

preconditioning, the relative residue decreases the fastest. In addition, the convergence 

behaviors are more stable. Similar convergence behaviors are found for larger problem 

sizes. 

Next, we investigate the effect of the depth index K in the wavelet tree on the 

resulting PWP preconditioner. For a scattering problem with a problem size of N, the 

maximum depth index for the PWP decomposition tree is (log2N). However, this does 

not necessarily lead to the best preconditioning performance. Fig. 7 plots the required 

iteration number versus the depth index K used in constructing the PWP preconditioner 

for N=1024. The results show that the curves flatten considerably after K=5, implying 

that there is not much to be gained beyond this depth in the wavelet tree. The reason for 

this phenomenon is because although the maximum-depth PWP tree generates the 



sparsest transformed moment matrix [10], the long PWP basis functions resulting from 

that tree shift some of the energy into the non-diagonal blocks, making the 

preconditioning results worse. For the problem sizes we have studied from 128 to 4096, 

the optimal PWP tree depths are usually between 3 and 6. Since the computational cost 

of constructing the preconditioner is proportional to the maximum depth of the PWP 

decomposition tree, we should not go beyond this depth when constructing the PWP 

preconditioner. 

Finally, we examine the computational cost of the PWP preconditioner. Fig. 8 

shows the CPU running time required to generate the PWP preconditioning matrix [Zbd] 

for Case 1 versus problem size N. The direct element computation in equation (10) is 

carried out and the PWP tree depth K is increased slightly from 3 to 6 as the problem size 

is changed from 128 to 4096. Fig. 9 shows the CPU running time needed to implement 

the multiple matrix-vector products required for the carrying out the PWP 

preconditioning in (9). We exclude the time needed for the first moment matrix and 

vector product in (9), as that operation can be done via the MLFMM. We find that the 

CPU running time grows at rate close to O(NlogN) in the both cases. This is consistent 

with the estimates given in Section III and meets the objectives we have set forth for the 

preconditioner. 

V. Conclusions 

A preconditioner for the moment equation based on the pre-defined wavelet 

packet basis has been proposed in this paper. Due to the vanishing moments of wavelet 



basis functions, the PWP-based moment matrix is sparse and diagonally concentrated. 

Consequently, an approximate-inverse preconditioner can be more easily designed and 

constructed than that based on the original space-domain moment matrix. The PWP 

preconditioner is constructed by inverting a block-diagonal form of the PWP-based 

moment matrix and transforming the resulting matrix back into the space domain. It has 

been shown that the complexity for the construction and preconditioning operation can be 

kept under 0(NlogN) in both computational cost and memory requirement. Our 

numerical results showed that the iteration numbers for the PWP-preconditioned moment 

equations are significantly smaller and grow at a lower rate than those without 

preconditioning or preconditioned using a space-domain preconditioner. In addition, the 

PWP preconditioner also performed better than the equivalent preconditioner derived 

from the conventional wavelet basis. Application of this concept to three-dimensional (3- 

D) problems is currently under investigation, with the goal of combining the 

preconditioner with the 3-D MLFMM to obtain solutions of large-scale problems. 

Finally, although we have chosen the block-diagonal matrix as the underlying 

structure of our approximate-inverse preconditioner, we have found that a block-banded 

matrix [5] or a thresheld transformed matrix [11, 20] gave better preconditioning results 

than the block-diagonal form. However, the inverses of those matrices are dense, 

resulting in 0(N2) computational bottlenecks for implementing the matrix-vector product 

in the preconditioning step. A worthwhile topic is to find a more effective approximate 

matrix in the PWP basis domain than the block-diagonal one, while preserving the 

0(NlogN) total computational cost and memory requirement. 
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(a) (b) 

Figure 1. (a) Conventional wavelet decomposition tree; 

(b) Pre-defined Wavelet Packet (PWP) decomposition tree. 

Figure 2. The pattern used to construct [ Z bd] from [ Z ]. 
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Figure 3. The test scatterers: (a) an open-ended inlet, and (b) a bent structure. 
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Figure 4. The moment matrix represented by PWP basis, [ Z ], 
for the inlet with N=256 (in logarithmic scale) 
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Figure 5. Iteration numbers vs. problem sizes for solving moment 
equations with different preconditioning methods for the scattering 

structures in (a) Case 1, (b) Case 2, and (c) Case 3. The problem sizes 
are increased by proportionally increasing the scatterer sizes. 
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Figure 6. Convergence behaviors of the preconditioned systems 
versus iteration numbers for PWP and other preconditioning methods in 

(a) Case 1, (b) Case 2, and (c) Case 3 with N=512. 
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Model-Based Frequency Extrapolation of Antenna Radiation 
Characteristics on Complex Platforms 
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I. Introduction 

In antenna design and analysis, the mounting platform can have a significant effect on the 
antenna radiation characteristics. However, rigorous solution of the radiation problem over a complex 
platform is very time consuming, and the computation complexity increases dramatically as the 
frequency increases. In this paper, we present a model-based frequency extrapolation technique with 
which the radiated field over a broad band of frequencies can be obtained using the rigorously 
computed results at low frequencies. 

Our approach entails three steps. First, the induced current on the platform surface is computed 
at low frequencies using the method of moments (MoM). Second, we apply the time-of-arrival model 
to the current on each basis element on the surface. The model coefficients are obtained using super- 
resolution algorithm ESPRIT [1 ]. Finally, the induced current at higher frequencies is computed using 
the model and the radiation characteristics are calculated. This approach is similar to that present in [2] 
and [3] for radar signature extrapolation. Our results show that when the frequencies and the 
discretization of the platform are properly chosen, the radiated field at higher frequencies can be 
extrapolated with only moderate computational cost. 

II. Extrapolation Methodology 

As the first step of the extrapolation process, the induced current on the target is computed at a 
small set of points at low frequencies. Once the current over the surface is computed at low 
frequencies, we apply the time-of-arrival model to each of the current element. In this model, we 
assume that the total current is induced by different scattering mechanisms, as shown in Fig. 1. Each 
of the incident mechanism has a distinct arrival time, so that the current can be written as 

Jm = fdane-"a- (1) 

where a is the angular frequency, N is the total number of incident mechanisms and t„ is the arrival 
time of the n* incident mechanism. 

Since the incident mechanisms correspond to scattering from different parts of the target, the 
maximum difference in t„ is related to the size of the target. Thus the sampling rate in the frequency 
domain should be high enough to distinguish these time events from all parts of the target. Based on 
this consideration, we approximately constraint the sampling rate in frequency to 
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äf<c/D (2) 

where c is the speed of light and D is the maximum dimension of the target. 

The model coefficients a„ and t„ are obtained using the superresolution algorithm ESPRIT, 
which is based on the model that the signal consists of a sum of exponential and additive white noise. 
Given a sequence with M samples, the algorithm can estimate the number of exponential N and 
determines the amplitude and period of each exponential term. The basic requirement in the number of 
samples is M > IN + 1. Once the model parameters are found, the induced current at higher 
frequencies can be computed using (1). The radiated field is then easily obtained from the extrapolated 
current. 

III. Results 

As an example, we consider a 2-D structure as shown in Fig. 2 (a). We are interested in the 
radiation pattern over a frequency band from 0.15 to 0.45 GHz. To obtain the data for the 
extrapolation, we compute the induced current at 10 frequencies from 0.15 to 0.24 GHz. Then we use 
the ESPRIT algorithm to obtain the model coefficients for each current element and compute the 
radiated field based on the model. Fig. 2(a) shows the radiated field of a horizontally polarized line 
source as a function of frequency at an elevation angle of 40°. The dashed curve is obtained from the 
model-based extrapolation while the solid curve is the reference brute-force solution. We observe that 
the extrapolation algorithm correctly predicts the peaks and null positions in frequency, indicating a 
good estimate on the times-of-arrival. Fig. 2(b) is the time domain response obtained via an inverse 
Fourier transform of the frequency data. The first large peak corresponds to the specular scattering 
from the flat surface and the second large peak is due to the scattering from the step region. 

We notice from Fig. 2(a) that the model-predicted field matches well with the reference field at 
the first 10 frequencies, but drops below the computed field as frequency goes higher. This is because 
the intensity of the field radiated by the line source is proportional to the square root of the frequency. 
We can overcome this by compensating this effect before doing the extrapolation. Thus the time-of- 
arrival model becomes 

jmJ^e-'"-]^ (3) 

where 4(0 should be replaced by a; for 3-D situations. After the compensation, the extrapolation result 
is further improved, as shown by the frequency and time responses in Figs. 3(a) and 3(b). 

Finally we look at the radiation problem of the 3-D platform in Fig. 4(a). The source is a 
horizontally polarized dipole. The solver used is FISC [4], which is a 3D MoM code based on the fast 
muitipole method. Similar to the 2-D case, we use the computed current at 10 frequencies from 0.15 to 
0.24 GHz to extrapolate the data to 0.45 GHz. The extrapolated radiation field as a function of 
frequency at the elevation angle of 40° is shown in Fig. 4(b) as the dashed curve. The reference brute- 
force solution is plotted as the solid curve. The major features of the radiated field are well 
characterized by the extrapolation algorithm. 
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IV. Conclusion and Discussion 

As we have seen from the results, the frequency extrapolation technique is an efficient way of 
obtaining the radiation pattern over a broad band of frequencies. Computation time is reduced 
dramatically since the current is rigorously solved only at low frequencies. We improved the result by 
compensating the frequency factor of the source in the time-of-arrival model. This indicates that a 
wrong frequency dependence in the model may result in errors in the model coefficients. In addition to 
the frequency factor of the source, the frequency dependence of different scattering components of 
each current element could be different, due to different scattering physics. Further incorporation of 
these effects should further enhance the accuracy of the extrapolation. 
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L Introduction 

The numerical characterization of antenna radiation in the presence of a large, 
complex platform is usually very time consuming. The problem is further 
compounded when the radiation pattern is desired over a broad frequency band. 
In this paper, we present a frequency extrapolation technique for the antenna 
radiation problem to obtain the radiated field over a wide band of frequencies 
from a limited set of frequency calculations. Our approach is similar to our 
previous work on radar signature extrapolation [1]. Given a CAD model of the 
platform, the induced current on the surface is first computed using a 
computational electromagnetics (CEM) simulator at a set of low frequencies. A 
time-of-arrival model is then applied to each current element and the super- 
resolution algorithm ESPRIT [2] is used to calculate the model coefficients. The 
frequency response of the current is extrapolated based on this model and the 
radiated field is obtained over a wide band of frequencies. The CEM simulator 
used in our work is the multi-level fast multipole solver HSC [3]. 

As a follow-up to the frequency extrapolation algorithm, we also set out to 
extract a sparse point-radiator model of the antenna radiation pattern in the 
presence of the platform. We assume the total radiation over some extended 
frequency and aspect window can be approximated by the radiation from a set of 
radiation centers. The location and amplitude of the radiation centers are 
determined by using a matching pursuit algorithm [4]. To speed up the 
parameterization time, we estimate the location of the radiation centers by 
utilizing a Fourier-based ASAR (Antenna Synthetic Aperture Radar) algorithm 
[5] we have developed previously. The resulting sparse point-radiation center 
model can be used for real-time reconstruction of complex radiation patterns. In 
addition, it can be used to pinpoint cause-and-effect in antenna-platform 
interaction. 

tt. Frequency Extrapolation 

-. An example of the antenna-platform problem is shown in Fig. 1. The antenna 
is assumed to be a horizontal dipole. We first compute the induced current at a 
number of low frequency points using FISC based on the CAD model of the 
platform. We assume that the total current is induced by different scattering 

0.7803-J639-X/99/S10.00O1999IEEE. 

446 



mechanisms where each of the incident mechanism has a distinct arrival time [1]. 
Also taking into account the fact that the amplitude of the radiated field from a 
dipole source is proportional to the frequency, a current element can be described 
by the following model: 

J(to)*<oZake-1Um (1) 
*-i 

where a is the angular frequency, N is the total number of incident mechanisms, 
and a* and t„ are the amplitude and arrival time of the n* incident mechanism, 
respectively. The model coefficients a, and r. are obtained by parameterizing the 
computed currents using ESPRIT, which is based on the model that the signal 
consists of a sum of exponential and additive white noise. Once the model 
parameters are found, the induced current at higher frequencies can be computed 
using (1). The radiated field is thefi.easily obtained from the extrapolated current. 

In the example, the induced current is computed from 0.1S to 0.24 GHz at an 
interval of 0.01 GHz. The current is then extrapolated and the radiated field is 
computed. The extrapolation result is compared with the brute-force reference 
data, which is also computed by HSC over the frequency band from 0.15 to 0.4S 
GHz at 6 = 50° and <p = 0°, as shown in Fig. 2(a). The coirespondjng time domain 
response is plotted in Fig. 2(b). The matching between the two is good in both the 
frequency and time domain, demonstrating the effectiveness of the extrapolation 
algorithm. 

DL Model-Based Parameterization 

Next, we set out to find a sparse model to represent the radiated field from the 
antenna-platfonn configuration. We assume that the radiated field can be 
approximated by the radiation of a set of point radiators, each having a frequency- 
aspect behavior described by: 

E'(k06) = Ae~'kr'eJk"'''"4c°'*'u'l"i'i"''"'c"t> = Ae~lkr°eltk'''*k,'°*'*'''   (2) 

where k is the wave number, (xa ya a) is the location of the radiation center. The 
origin of the above basis is illustrated in Fig. 3. The matching pursuit algorithm is 
applied to extract the point radiators one at a time. To speed up the extraction 
time of the matching pursuit algorithm, we estimate the location of the radiation 
centers by utilizing the Fourier-based ASAR algorithm. We inverse Fourier 
transform the radiated field with respect to the frequency and angles to generate 
an ASAR image. The point with the highest intensity is first located in the ASAR 
image and its amplitude and coordinates serve as an estimate of the strongest 
radiation center. We next zoom in on the precise location of the radiation center 
via a fine search. We then subtract the contribution of this radiation center from 
the total radiated field and iterate the process until the energy in the residual 
signal has reached a sufficiently small level. 
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We demonstrate this concept by extracting the radiation centers from the 
frequency-extrapolated HSC data from 0.6 to 0.9GHz. The angular range of 
observation is over a 30-degree window in both azimuth and elevation. The first 
10 extracted radiation centers are shown in Fig. 4, with their amplitudes 
represented by grayscale. We observe that the dominant platform scattering 
comes from the edge diffraction from the right edge of the platform and the comer 
structure formed by the cylinder and plate. Note that the radiation center due to 
the edge diffraction is slightly off the platform. This is due to the limited 
resolution of the matching pursuit algorithm. Once the sparse representation is 
generated, the radiated field can be rapidly reconstructed using the radiation 
centers. The original radiated field at k, = 0 is plotted in Fig. 5(a) as a function of 
the k, mi kj, where lc k, and k, are defined in (2). The field reconstructed from 
the first 10 radiation centers is shown in Fig. 5(b). The two patterns match well 
over both frequency and angle. 

IV. Conclusion» 

We have applied a frequency extrapolation technique to the antenna radiation 
problem. The radiated field over a broad band of frequencies-can be extrapolated 
efficiently based on the computation result at a limited number of low frequency 
points. In addition, a radiation center model of the platform radiation can be 
found by performing the matching pursuit algorithm. The model proves effective 
as the radiated field can be accurately reconstructed with very little computation 
effort. 
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I. Introduction 
Recently, a number of iterative solvers based on fast algorithms have emerged 

in computational electromagnetics. These solvers have much higher 
computational efficiency than traditional approaches. However, for wide-band, 
wide-angle RCS calculations, the solver has to be executed repeatedly for each 
angle or frequency, which results in large computational expenses. A number of 
interpolation and extrapolation approaches have been developed to generate the 
RCS curve with as sparse a data sampling as possible [1]. In this paper, we 
address the interpolation problem in frequency and angle using a model-based 
approach. Our approach is the adaptive feature extraction (AFE) algorithm. It has 
been used recently by us to eliminate the aliasing effect and construct ISAR 
image from unevenly undersampled measurement data [2]. Unlike standard 
interpolation algorithms which suffers from theNyquist sampling limitation, AFE 
can overcome the Nyquist sampling criterion by using uneven sampling. The 
essential idea of the adaptive algorithm is to search and extract out individual 
scattering features one at a time in an iterative fashion. When applied to the 
present problem, the interference between different scattering features can be . 
avoided. After all the main features are extracted, the current and the RCS on a 
denser grid of sampling can be interpolated by summing the contributions from all 
the extracted scattering features. The AFE algorithm is tested using numerical 
examples for both 1-D frequency interpolation and 2-D frequency-aspect 
interpolation. 

Ü. l-D Frequency Interpolation Algorithm 
In simple curve fitting, if we assume that the far-field frequency response of a 

target is R(f) and the field at sampling frequencies f is known, the interpolated 
results will have the following form, 

R(f) = lR(f,) w,(f) (i) 
where N is the number of the original sampling points and W(f) is the 
interpolation basis functions. The interpolation will have good performance when 
the original function is a slowly varying function of frequency. According to the 
Nyquist sampling criterion, the sampling interval in the frequency domain should 
be less than l/(2Tm„) to ensure good interpolation results, where T™, is the 
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longest time delay between the different scattering mechanisms caused by the 
structure. The curve fitting procedure can also be carried out for the induced 
current at each point on the target This has been found to have an advantage over 
the field-based interpolation [3], since the phase-demodulated current has much 
looser Nyquist sampling criterion. As a result, the number of sampling points 
needed to carry out the interpolation can be much less than that using a fitting 
scheme for the far field. Howevif, this observation is not always trtie and only 
works for targets where the scattering mechanism is dominated by physical optics. 
In this work, we apply the AFE algorithm to the current to deal with the higher- 
order interactions in more general targets. Our approach is based on the following 
time-of-arrival model of the induced current 

•/<0-Z*,«Pi'-PSf»,) (2) 
p 

This model gives a good description of the multiple scattering physics at high 
frequencies [4,5]. The number of terms is left unspecified and will be determined 
by the algorithm.   To determine the model parameters Bp and l„ we use an 
iterative procedure.   We first project the sampled frequency response onto the 
complex conjugate of the model bases in (2): 

"  M 
where the subscript p denotes it is in the/>th stage of the iterative procedure. It 
should be noted that the sampling i is intentionally chosen to be randomly 
distributed in the frequency band to avoid the ambiguity in determining the 
strongest feature. Then the strongest feature in this stage is decided by exhaustive 
search over all values oft, 

Bf =argmax[A/,(f)] (4) 

Once the strongest feature is found, a remainder signal is produced by subtracting 
out the pth feature: 

.V. if,) = J, if,) " B, art-JW,*,) (s) 
After all the amplitude and time-of-arrival parameters are known, the interpolated 
current function at any frequency within the band can be calculated using formula 
(2). Therefore, the far field at the denser frequency sampling can be obtained by 
integrating the induced current 

To verify the above analysis, we use the scattering from three 2-D circular 
cylinders as an example. The structure is shown inFig.l(a). The original RCS is 
computed at 71 points from 0.3 GHz to 0.65 GHz using the method of moments. 
The result is shown as the solid line inFig.l(b). Next, we use the values at 18 
equally spaced points and carry out a current-based interpolation using simple 
spline fitting. The result is shown as the dotted line in Fig. 1(b). Deviations 
between the two results can be seen. While the current-domain spline gives good 
prediction of the physical optics current on the target, the multiple interactions 
mechanisms are not well interpolated. Next, we use the AFE algorithm to carry 
out the interpolation.   Instead of 18 equal spaced points, we select 18 points 
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randomly from the original 71 points. The result is plotted as the dashed line in 
Fig. 1(b), which agrees with the original calculation much better than the simple 
spline interpolation. This comparison is further shown when we Fourier transform 
the frequency responses to the range profiles in Fig. 1(c). We can see that most of 
the features from the AFE interpolation coincide with the reference result while 
the current-domain spline interpolation gives strong artifacts among the real 
scattering features. 

ID. 2-D Frequency-Aspect Interpolation Algorithm 
The AFE technique can be extended to 2-D interpolation in both frequency 

and angular domains.   We replace the model in (2) by the following 2-D 
scattering center model [5]: 

40-Z*, txp(-j—(*, cose+y, sine+/,;;        (6) 

where lp represents the time delay caused by the higher order interactions. This 
model can be considered as an extension of the 1-D time-of-arrival model in (2). 
To show the payoff of the 2-D interpolation algorithm, we set out to construct an 
ISAR image of a cylinder-plate structure shown in Fig. 2(a). Fig. 2(b) shows the 
reference ISAR image generated from 71x 81 sampling points in the frequency- 
aspect plane. The grayscale image has a dynamic range of 40 dB. To construct 
the image using the AFE algorithm, we choose 200 points randomly from the 
original 5751 points. The ISAR image obtained using the 2-D AFE interpolation 
is plotted in Fig. 2(c). Most of the features of the interpolated image agree well 
with the brute-force calculation. The dynamic range of the interpolated result is 
limited by the imperfection of the 2-D model in (6) and the errors in the AFE 
procedure. 
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